DOI QR코드

DOI QR Code

Apartment Framework Design using Data

데이터를 활용한 공동주택 프레임워크 디자인

  • Choi, Jang-Soon (School of Architecture, Architectural Engineering and Civil Engineering, Kangwon National University)
  • 최장순 (강원대학교 건설융합부 건축학전공)
  • Received : 2018.09.04
  • Accepted : 2018.12.07
  • Published : 2018.12.31

Abstract

This research explains a new process in architecture frameworks. A complete analysis on implementation of the specific frameworks can be conducted by a special system. Moreover, the system can be installed anywhere, and it produces a unique result, which is customized based on the contents of architectural designs by users. Before using the system, an architect should think about the design and the process of constructing frameworks because a computer sometimes computes misleading results although the architect describes architectural structures, which the designer wants. If the architect inputs the same process into the computer, and the result of frameworks changes, it is not a proper architectural design. Hence, a tool, which precisely treats data, is needed. Therefore, when constructing the proper architecture, a new paradigm of architecture should be used to distinguish the issues of discussion by using various data. Also, based on this information, an apartment housing complex design, related to possible parameters, which can be expressed by combining various fusion tables and geocloud, and architectural designs, is proposed.

본 연구는 새로운 건축 설계 과정을 설명하는데 있어 특정한 시스템을 이용해서 건축 프레임워크에 대한 수행을 분석하는 것이 가능하다. 또한, 이러한 시스템은 컴퓨터가 설치되어있고 인터넷망이 구축되어 있으면 장소에 구애받지 않은 채로 가동이 가능하며, 사용자가 컴퓨터에 입력한 내용을 기반으로 한 독특한 프레임워크 결과물을 산출해 낼 수 있다. 이러한 시스템을 사용하기 전에, 건축가가 설계를 제대로 했을지라도, 컴퓨터가 잘못 인식할 수도 있으므로 건축 설계자는 원하는 결과를 얻을 수 있도록 사전에 건축 디자인과 설계 과정을 생각해야 한다. 그런데 같은 과정을 입력했는데도 불구하고 건축 계획의 프레임워크 결과가 달라진다면, 그것은 제대로 된 건축 설계라고 볼 수 없다. 그러므로 정확하게 데이터 처리를 할 수 있는 도구가 건축 디자인과 설계를 함에 있어서 필요하다. 따라서 건축을 설계할 때, 건축의 새로운 패러다임으로 각종 데이터를 활용하여 논의의 사안을 찾아 구별해야 한다. 또한 이것을 바탕으로 다양한 정보융합과 공간클라우드를 접목하여 나타낼 수 있는 파라미터정보와 건축디자인을 연관시킨 공동주택계획안을 제시하였다.

Keywords

SHGSCZ_2018_v19n12_332_f0001.png 이미지

Fig. 1. Graphic showing how much data is accumulated and used through major portal site.

SHGSCZ_2018_v19n12_332_f0002.png 이미지

Fig. 2. Flow diagram of generating a subjectively translated form by the past architect

SHGSCZ_2018_v19n12_332_f0003.png 이미지

Fig. 3. Flow diagram of generating a objectively translated form by the current architect

SHGSCZ_2018_v19n12_332_f0004.png 이미지

Fig. 4. Data Source of economically active population survey[4]

SHGSCZ_2018_v19n12_332_f0005.png 이미지

Fig. 5. Data element of the family size[4]

SHGSCZ_2018_v19n12_332_f0006.png 이미지

Fig. 6. Data element of aging population[4]

SHGSCZ_2018_v19n12_332_f0007.png 이미지

Fig. 7. Example of geocloud[9]

SHGSCZ_2018_v19n12_332_f0008.png 이미지

Fig. 8. All cars have a basic frameworks such as frame, engine, power train, steering, wheel & brake and suspension.

SHGSCZ_2018_v19n12_332_f0009.png 이미지

Fig. 9. The general framework can be applied to a site to formulate an architectural design based on its users and context

SHGSCZ_2018_v19n12_332_f0010.png 이미지

Fig. 10. Site location data

SHGSCZ_2018_v19n12_332_f0011.png 이미지

Fig. 11. The early floor plan module process for the framework

SHGSCZ_2018_v19n12_332_f0012.png 이미지

Fig. 12. The early floor plan for the framework

SHGSCZ_2018_v19n12_332_f0013.png 이미지

Fig. 13. The early elevation plan for the framework

SHGSCZ_2018_v19n12_332_f0014.png 이미지

Fig. 14. The final floor plans & block types

SHGSCZ_2018_v19n12_332_f0015.png 이미지

Fig. 15. The final layout

SHGSCZ_2018_v19n12_332_f0016.png 이미지

Fig. 16. The final section

SHGSCZ_2018_v19n12_332_f0017.png 이미지

Fig. 17. The final elevation

SHGSCZ_2018_v19n12_332_f0018.png 이미지

Fig. 18. The final bird’s eye view

Table 1. The relation of contextual data, demographics, and user input

SHGSCZ_2018_v19n12_332_t0001.png 이미지

References

  1. Chris Anderson, "The End of Theory: The Data Deluge Makes Scientific Method Obsolete", Wired Magazine, June, 2011. (Internet Link: http://www.wired.com/science/discoveres/magazine/16-07/pb_theory)
  2. Neil Leach, "Digital Morphogenesis", Architectural Design Theoretical Meltdown, Vol 79 No 3, pp.32-37, Jan, 2009. DOI: https://doi.org/10.1002/ad.806
  3. Cynthia Ottchen, "The Future of Information Modelling and the End of Theory: Less is Limitted, More is Different, Architectural Design, Vol 79, No 2, p.22-27, March, 2009. DOI: https://doi.org/10.1002/ad.845
  4. KOSIS, c2018[cited 2018, June, 15], Available from: http://kosis.kr/search/search.do, Statistics Korea, June, 2018.
  5. Wikipedia. Google Fusion Tables[Internet]. Wikipedia, c2018[cited 2018 September 20], Available from: https://en.wikipedia.org/wiki/Google_Fusion_Tables, (accessed Sept, 20. 2018)
  6. File extensions[Internet], File-extensuins.org c2018[cited 2018 October 18]. Available from: https://www.file-extensions.org/shp-file-extension, (accessed Sept, 20. 2018)
  7. CSV Format-CSV Reader[Internet], CSV Reader.com c2018[cited 2018 September 15]. Available from: https://www.csvreader.com/csv_format.php
  8. Google Earth[Internet], Google Earth/KML Files-USGS Earthquake Hazards Program, c2018[cited 2018 September 16]. Available from: https://earthquake.usgs.gov/learn/kml.php
  9. Zachary Steven Soflin, Data Driven Architecture, University of Nebrasca-Lincoln M.Arch, p.11, 2012
  10. GeoCloud[Internet], c2018[cited 2018 July 10]. Available from: https://www.geocloud.work
  11. Michael Batty, "A Digital Breeder for Designing Cities", Architectural Design, Vol 79, No 4, pp.45-49, June, 2009 DOI: https://doi.org/10.1002/ad.916
  12. Tom Verebes, "Experiments in Associative Urbanism", Architectural Design, Vol 79 No 4, pp.24-33, June, 2009 DOI: https://doi.org/10.1002/ad.913