DOI QR코드

DOI QR Code

Program-level Maintenance Scheduling Support Model for Multiple University Facilities

프로그램레벨 다수 대학시설물 유지보수 일정계획 지원 모델

  • Chae, Hong-Yun (Department of Architectural Engineering, University of Seoul) ;
  • Cho, Dong-Hyun (Department of Architectural Engineering, University of Seoul) ;
  • Park, Sang-Hun (Department of Architectural Engineering, University of Seoul) ;
  • Bae, Chang-Joon (Department of Architectural Engineering, University of Seoul) ;
  • Koo, Kyo-Jin (Department of Architectural Engineering, University of Seoul)
  • 채홍윤 (서울시립대학교 건축공학과) ;
  • 조동현 (서울시립대학교 건축공학과) ;
  • 박상헌 (서울시립대학교 건축공학과) ;
  • 배창준 (서울시립대학교 건축공학과) ;
  • 구교진 (서울시립대학교 건축공학과)
  • Received : 2018.09.03
  • Accepted : 2018.12.07
  • Published : 2018.12.31

Abstract

The university facility is made up of multiple buildings and has many maintenance items. In addition, administrative constraints need to be handled within a limited period. Most maintenance work is small scale and multi-work construction, such as waterproofing, needs to be organized. The facility manager makes annual unit price contract with a maintenance company and carries out the maintenance work. On the other hand, delay and rework is occurring because existing maintenance work performed without scheduling based on the manpower input. This study proposed a scheduling model that can support the facility manager to manage maintenance works of multiple university facilities at the program level. The model consists of three stages in order. In object analysis, details of the maintenance items were analyzed and the quantity is calculated based on the quantity takeoff sheet. In resource analysis, the craftsmen and construction period of detailed works are derived for the effective input of craftsmen. In scheduling, the priority of each work and the optimal manpower input are derived. The optimal schedule is selected according to the goodness of fit. The applicability and effectiveness of the prototype was evaluated through a case study and interviews with case participants. The model was found to be an effective tool to support the scheduling of maintenance works for the facility manager.

대학 시설은 다수의 건물들로 구성되어 많은 유지보수항목이 있고 한정된 기간 내에 처리해야 하는 관리상의 제약사항이 있다. 대부분의 유지보수 작업은 규모가 작으며 방수공사 등 다수 공종이 동시에 진행되는 특성을 가진다. 시설관리자는 유지보수업체와 연간단가계약을 맺고 공사를 추진하지만 기존 유지보수공사는 일정 및 인력투입계획 없이 공사가 진행되어 공사지연과 다수의 재작업이 발생하고 있다. 본 연구는 시설관리자가 다수의 대학 시설물 유지보수공사들을 프로그램 레벨로 관리할 수 있도록 지원하는 일정계획 모델을 제안하였다. 모델은 순차적으로 진행되는 3단계로 구성된다. 대상 분석단계에서는 수량산출서를 바탕으로 유지보수항목들의 세부공종을 분석하고 수량을 산출한다. 자원 분석단계에서는 효과적인 전문기능공의 투입을 위해 세부공종별 전문기능공 및 공사기간을 도출한다. 일정계획 수립단계에서는 공종별 우선순위와 최적 투입인력이 도출되고 적합도에 따라 일정계획 최적안을 선정한다. 사례적용결과 프로그램 레벨에서 다수 대학시설물 유지보수공사 간의 효과적인 인력투입이 가능하며, 노무비가 감소되어 모델 적용 전 보다 많은 수의 공사를 완료할 수 있었다. 실무자 면담을 통해 모델의 적용성 및 효과성을 평가한 결과 관리자의 유지관리공사 일정관리를 지원할 수 있는 효과적인 도구로 평가되었다.

Keywords

SHGSCZ_2018_v19n12_303_f0001.png 이미지

Fig. 5. Number of monthly construction completion (2013)

SHGSCZ_2018_v19n12_303_f0002.png 이미지

Fig. 6. Maintenance scheduling support model

SHGSCZ_2018_v19n12_303_f0003.png 이미지

Fig. 7. Simulation result based on input workforce

SHGSCZ_2018_v19n12_303_f0004.png 이미지

Fig. 8. Comparison of completed monthly maintenance work

Table 1. Definitions for maintenance

SHGSCZ_2018_v19n12_303_t0001.png 이미지

Table 2. Number of maintenance and rework items per year

SHGSCZ_2018_v19n12_303_t0002.png 이미지

Table 3. Construction completion ratio compared to work order

SHGSCZ_2018_v19n12_303_t0003.png 이미지

Table 4. User importance index

SHGSCZ_2018_v19n12_303_t0004.png 이미지

Table 5. Maintenance priority

SHGSCZ_2018_v19n12_303_t0005.png 이미지

Table 6. Detail work type and quantity of the case

SHGSCZ_2018_v19n12_303_t0006.png 이미지

Table 7. Priority of the case

SHGSCZ_2018_v19n12_303_t0007.png 이미지

Table 8. Fitness evaluation result

SHGSCZ_2018_v19n12_303_t0008.png 이미지

Table 9. Result of scheduling considering input workforce

SHGSCZ_2018_v19n12_303_t0009.png 이미지

Table 10. Result of case study

SHGSCZ_2018_v19n12_303_t0010.png 이미지

References

  1. K. J. Koo, "Organizational Program Management of Multiple Maintenance Projects under Fund Constraints", Korean Journal of Construction Engineering and Management, Vol. 5, No. 2, pp. 211-218, 2004.
  2. H. Y. Chae, "Maintenance Schedule Prototype of Annual Unit Price Contract Constructions for Multiple Facilities" Master's thesis, University of Seoul, 2018
  3. M. H. Shin, C. S. Lee, "Maintenance Case and Cost Analysis for University Facilities", Journal of the Korean Institute of Educational Facilities, Vol. 26, No. 6, 27-34, 2016. DOI: http://dx.doi.org/10.7859/kief.2016.23.6.027
  4. Special Act on the Safety Control and Maintenance of Establishments, No. 14545 (2018), Article 2, 11.
  5. Building Act, No. 15594 (2018), Article 2, 16-2.
  6. The Ministry of the Interior and Safety, A Study on Improvement of Local Government Contract System. Seoul: Korean Association for Local Government Studies, 2016. Final Report '16-12.
  7. J. R. Kim, J. H. Son, "A Study on Estimation Status and Improvement Plan of the Repair and Replacement Cycle of a Building", Journal of the Korea Institute of Building Construction, Vol. 10, No. 1, pp. 193-198, 2010. DOI: http://dx.doi.org/10.5345/JKIC.2010.10.1.193
  8. J. H. Park, K. H. Kim, J. J. Kim, "Development for Using Stochastic Construction Scheduling Model considering Weather Elements", Journal of the Architectural Institute of Korea Structure & Construction, Vol. 27, No. 2, pp. 97-104, 2011.
  9. C. A. Kwon, S. W. Lee, "A Study on System Improvement of Duration Schedule for Construction Works", Journal of the Architectural Institute of Korea Structure & Construction, Vol. 17, No. 2, pp. 83-92, 2001.
  10. J. H. Lee, "A Study on Railway Track Maintenance Scheduling", Master's thesis, Kangwon National University, 2007.
  11. M. S. Kim, Y. Kim, J. H. Kim, "Suggestions on Efficient O&M Plan for Improving Users' Satisfaction on the University Dorm Facilities", Journal of the Korean Institute of Educational Facilities, Vol. 24, No. 5, pp. 11-18, 2017. DOI: http://dx.doi.org/10.7859/kief.2017.24.5.011
  12. M. N. Grussing, L. R. Marrano, "Building Component Lifecycle Repair/Replacement Model for Institutional Facility Management", Computing in Civil Engineering (2007), pp. 550-557, 2007. DOI: https://doi.org/10.1061/40937(261)65
  13. J. Kim, S. Han, C. Hyun, "Minimizing Fluctuation of the Maintenance, Repair, and Rehabilitation Cost Profile of a Building", Journal of Performance of Constructed Facilities, Vol. 30 No. 3, pp.1-7, 2015. DOI: https://doi.org/10.1061/(ASCE)CF.1943-5509.0000775
  14. Y. I. Kim, K. H. Shin, C. S. Lee, "Decision making of remodeling priority for an aged public building", Journal of the Architectural Institute of Korea, Structure & Construction, Vol. 19, No. 3, pp. 107-114, 2003.
  15. C. H. Ryoo, "A Study on the Priorities for Quality Management of the Construction Work in Educational Facilities in Korea", PhD diss., Yonsei University, 2008.
  16. S. H. Yun, C. W. Park, S. Y. Jeong, "A Study on the Integrated Construction Defects Assessment of Apartments for Systematic Asset Management" Journal of the Architectural Institute of Korea, Structure & Construction, Vol. 24, No. 8, pp. 179-186, 2008.
  17. Y. Cha, J. Kim, C. Hyun, S. Han, "Development of a Program Definition Rating Index for the Performance Prediction of Construction Programs", Sustainability, Vol. 10, No. 8, pp. 27-47, 2018. DOI: https://doi.org/10.3390/su10082747
  18. R. J. Gray, Alternative Approaches to Programme Management, International Journal of Project Management, Vol. 15, No. 1, pp. 5-9, 1997. DOI: https://doi.org/10.1016/S0263-7863(96)00014-2
  19. S. Selim, M. Ismail, "K-Means-Type Algorithms: a generalized convergence theorem and characterization of local optimality", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 6, No. 1, pp. 81-87, 1984. DOI: https://doi.org/10.1109/TPAMI.1984.4767478
  20. T. M. Kodinariya, P. R. Makwana, "Review on determining number of Cluster in K-Means Clustering", International Journal of Advance Research in Computer Science and Management Studies, Vol. 1, No. 6, pp. 90-95, 2013.