DOI QR코드

DOI QR Code

Relationship between psychological stress and hippocampus volume through meta-analysis

메타분석을 통한 심리적 스트레스와 해마용적 간의 관계

  • Jo, Min-kyung (Department of Psychology, Pusan National University) ;
  • Hong, Changhee (Department of Psychology, Pusan National University)
  • Received : 2018.08.27
  • Accepted : 2018.12.07
  • Published : 2018.12.31

Abstract

This study was conducted to define hippocampal volume differences between a stress-laid group and normal individual group via meta-analysis. This investigation included studies that contained hippocampal volume measurements in association with stress from 1990 to 2016. Magnetic resonance imaging (MRI) measurements of hippocampal volumes were used to determine the mean size, standard deviation and sample size. The pooled effect size was measured by the standardized mean difference (SMD) with a 95% confidence interval. This meta-analysis included 13 studies comprising 374 stress subjects and 439 normal subjects. Eight studies targeted war-related veterans and holocaust survivors, while five targeted personal trauma associated with childhood abuse, rape, accident or financial hardship. The overall mean effect size (Hedges' g) was -0.70 (-1.04; -0.37). Overall, the SMD value was -0.70, with a moderate effect size, but high heterogeneity. Depending on the characteristics of the stressor, studies were divided by subgroups of war-related veterans and subjects with personal trauma and then analyzed again. In the war-related subgroup, the Hedges' g was -0.47 (-0.78; -0.16), while in the personal stressor-related subgroup it was -0.91 (-1.57; -0.26). These results indicate that there was a significant negative correlation between psychological stress and hippocampal volume.

본 연구는 심리적 스트레스 경험과 해마 용적의 차이를 체계적이고 종합적으로 검증하기 위해 메타분석을 실시하였다. 메타분석을 위해 1990년도에서 2016년도까지 출판된 국외 문헌들 중 스트레스를 경험한 개인의 해마 용적을 측정한 연구들을 대상으로, PRISMA에 따라 스트레스 경험 집단과 정상 집단 간의 해마 용적 차이를 확인하였다. MRI를 사용하여 해마용적의 평균, 표준편차, 사례수가 제시된 연구들이 분석에 사용되었고, 13편의 연구(스트레스 경험 374명, 정상 대상자 439명)가 최종 선별되었다. 스트레스원의 유형에 따라서는, 전쟁관련 연구 8편, 개인적 외상사건 관련 연구 5편으로 나눌 수 있다. 전체 메타분석에서 효과크기는 -0.70(-1.04; -0.37)이었고, 스트레스원으로 나누어 분석하였을 때, 전쟁 관련 하위집단에서의 효과크기는 -0.47(-0.78; -0.16), 개인적 외상사건 관련 하위집단에서의 효과크기는 -0.91(-1.57; -0.26)으로 나타났다. 분석 결과, 스트레스의 경험과 해마 용적 간의 유의한 부적 상관이 확인되었다. 만성적인 스트레스 요인과 그로 인한 환자 집단들의 해마 용적은 각 연구 간 이질성이 높은 편이었지만, 3개의 연구를 제외하고 모두 해마 용적이 통제집단에 비해 작게 나타났다.

Keywords

SHGSCZ_2018_v19n12_227_f0001.png 이미지

Fig. 1. PRISMA flow chart

SHGSCZ_2018_v19n12_227_f0002.png 이미지

Fig. 2. Meta-analysis of results for all included studies.

SHGSCZ_2018_v19n12_227_f0003.png 이미지

Fig. 3. Subgroup analyses: the characteristics of stressor. a. war-related subgroup, b. personal trauma related subgroup.

SHGSCZ_2018_v19n12_227_f0004.png 이미지

Fig. 4. Funnel plot of the effect of hippocampal volume on stress group

Table 1. Summary of the characteristics of studies included in the meta-analysis

SHGSCZ_2018_v19n12_227_t0001.png 이미지

References

  1. D. Miller, J. O'callaghan, "Aging, Stress and The Hippocampus", Ageing research reviews, Vol.4, No.2, pp. 123-140, 2005. DOI: https://doi.org/10.1016/j.arr.2005.03.002
  2. H. M. Duvemoy, The Human Hippocampus: Functional Anatomy, Vascularization and Serial Sections with MRI. p. 6-25, Springer Science & Business Media, 2005.
  3. J. Kieman, R. Rajakumar, Barr's the human nervous system: an anatomical viewpoint. Lippincott Williams & Wilkins, 2013.
  4. J. O'Keefe, J. Dostrovsky, "The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat", Brain Research, Vol.34, No.l, pp. 171-175, 1971. DOI: http://dx.doi.org/10.1016/0006-8993(7n90358-l
  5. N. J. Broadbent, L. R. Squire, R. E. Clark, "Spatial memory, recognition memory, and the hippocampus", Proceedings of the National Academy of Sciences of the United States of America, Vol.101, No.40, pp. 14515-14520, 2004. DOI: https://doi.org/10.1073/pnas.0406344101
  6. B. McNaughton, C. Bames, J. Gerrard, K. Gothard, M. Jung, J. Knierim, et al., "Deciphering the hippocampal polyglot: the hippocampus as a path integration system", Journal of Experimental Biology, Vol.199, No.l, pp. 173-185, 1996.
  7. T. Bartsch, R. Schofeld, F. J. Muller, K. Alfke, B. Leplow, J. Aldenhoff, et al., "Focal Lesions of Human Hippocampal CA1 Neurons in Transient Global Amnesia Impair Place Memory", Science, Vol.328, No.5984, pp. 1412-1415, 2010. DOI: https://doi.org/10.1126/science.1188160
  8. C. Zarow, H. V. Vinters, W. G. Ellis, M. W. Weiner, D. Mungas, L. White, H. C. Chui, "Correlates of Hippocampal Neuron Number in Alzheimer's Disease and Ischemic Vascular Dementia", Annals of neurology, Vol.57, No.6, pp. 896-903, 2005. DOI: https://doi.org/10.1002/ana.20503
  9. G. A. Higgins, D. A. Lewis, S. Bahmanyar, D. Goldgaber, D.C. Gajdusek, W. G. Young, et al., "Differential regulation of amyloid-beta-protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease", Proceedings of the National Academy of Sciences, Vol.85, No.4, pp. 1297-1301, 1988. DOI: https://doi.org/10.1073/pnas.85.4.1297
  10. C. D. Conrad, J. B. Ortiz, J. M. Judd, "Chronic Stress and Hippocampal Dendritic Complexity: Methodological and Functional Considerations", Physiology & Behavior, Vol.178, pp.66-81, 2017. DOI: https:"doi.org/ 10.1016/j .physbeh.2016.11.017
  11. T. Frodl, V. O'Keane, "How does the brain deal with cumulative stress? A review with focus on developmental stress, HP A axis function and hippocampal structure in humans", Neurobiology of Disease, Vol.52, pp,24-37, 2013. DOI: http://dx.doi.Org/10.1016/i.nbd.2012.03.012
  12. B. E. Leonard, "HPA and immune axes in stress: involvement of the serotonergic system", Neuroimmunomodulation, Vol.13, No.5-6, pp.268-276, 2006. DOI: https://doi.Org/10.l159/000104854 https://doi.org/10.1159/000104854
  13. C. Heim, D. J. Newport, T. Mletzko, A. H. Miller, C. B. Nemeroff, "The link between childhood trauma and depression: insights from HPA axis studies in humans", Psychoneuroendocrinology, Vol.33, No.6, pp.693-710, 2008. DOI: https://doi.org/10.1016/j.psyneuen.2008.03.008
  14. J. D. Bremner, P. Randall, E. Vermetten, L. Staib, R. A. Bronen, C. Mazure, et al., "Magnetic Resonance Imaging-Based Measurement of Hippocampal Volume in Posttraumatic Stress Disorder Related to Childhood Physical and Sexual Abuse-A Preliminary Report", Biological psychiatry, Vol.41, No.l, pp.23-32, 1997. DOI: https://doi.org/10.1016/소)006-3223(96)00162-X
  15. T. V. Gurvits, M. E. Shenton, H. Hokama, H. Ohta, N. B. Lasko, M. W. Gilbertson, et al., "Magnetic Resonance Imaging Study of Hippocampal Volume in Chronic, Combat-Related Posttraumatic Stress Disorder", Biological psychiatry, Vol.40, No. 11, pp. 1091-1099, 1996. DOI: https://doi.org/10.1016/S0006-3223(96)00229-6
  16. D. G.Baker, S. A. West, W. E. Nicholson, N. N. Ekhator, J. W. Kasckow, K. K. Hill, et al., "Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder", American Journal of Psychiatry, Vol.156, No.4, pp.585-588, 1999.
  17. B. M. Elzinga, C. G. Schmahl, E. Vermetten, R. van Dyck, J. D. Bremner, "Higher cortisol levels following exposure to traumatic reminders in abuse-related PTSD", Neuropsychopharmacology, Vol.28, No.9, pp. 1656-1665, 2003 DOI: https://doi.org/10.1038/sj.npp.1300226
  18. R. Yehuda, "Post-traumatic stress disorder", New England journal of medicine, Vol.346, No.2, pp. 108-114, 2002. DOI: https://doi.org/10.1056/NEJMraQ 12941
  19. R. Yehuda, D. Boisoneau, M. T. Lowy, E. L. Giller, "Dose-response changes in plasma cortisol and lymphocyte glucocorticoid receptors following dexamethasone administration in combat veterans with and without posttraumatic stress disorder", Archives of General Psychiatry, Vol.52, No.7, pp.583-593, 1995. DOI: https://doi.org/10.1001/archpsyc.1995.03950190065010
  20. J. D. Bremner, M. Vythilingam, E. Vermetten, J. Adil, S. Khan, A. Nazeer, et al., "Cortisol response to a cognitive stress challenge in posttraumatic stress disorder (PTSD) related to childhood abuse", Psychoneuroendocrinology, Vol.28, No.6, pp.733-750, 2003. DOI: https://doi.org/10.1016/S0306-4530(02')00067-7
  21. G. Schwarzer, J. R. Carpenter, G. Rucker, Meta-analysis with R, Springer, 2015.
  22. M. E. Zimmerman, A. Ezzati, M. J. Katz, M. L. Lipton, A. M. Brickman, M. J. Sliwinski, R. B. Lipton, "Perceived Stress Is Differentially Related to Hippocampal Subfield Volumes among Older Adults", PLoS One, Vol.ll, No.5, pp.eO154530. DOI: https://doi.org/10.1371/joumal.pone.0154530
  23. T. Gorbach, S. Pudas, A. Lundquist, G. Oradd, M. Josefsson, A. Salami, et al., "Longitudinal association between hippocampus atrophy and episodic-memory decline", Neurobiology of Aging, Vol.51, pp. 167-176, 2017. DOI: https://dx.doi.org/10.1016/j.neurobiolaging.2016.12.002
  24. A. Jatzko, S. Rothenhofer, A. Schmitt, C. Gaser, T. Demirakca, W. Weber-Fahr, et al., "Hippocampal volume in chronic posttraumatic stress disorder (PTSD): MRI study using two different evaluation methods", Journal of Affective Disorders, Vol.94, No. 1-3, pp.121-126, 2006. DOI: https://doi.Org/10.1016/i.iad.2006.03.010
  25. A. Vyas, R. Mitra, B. S. Rao, S. Chattarji, "Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons", Journal of Neuroscience, Vol.22, No. 15, pp.6810-6818, 2002. DOI: https://doi.org/10.1523/JNEURQSCI.22-15-06810.2002
  26. J. D. Bremner, J. Licinio, A. Darnell, J. H. Krystal, M. J. Owens, S. M. Southwick, et al., "Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder", American Journal of Psychiatry, Vol.154, pp.624-629, 1997. DOI: https://doi.org/lo! 1176/ajp. 154.5.624 https://doi.org/10.1176/ajp.154.5.624
  27. Z. H. Cheung, W. H. Chin, Y. Chen, Y. P. Ng, N. Y. Ip, "Cdk5 is involved in BDNF-stimulated dendritic growth in hippocampal neurons", PLoS Biol, Vol.5, No.4, e63. DOI: https://doi.org/10.137l/joumal.pbio.0050063 https://doi.org/10.1371/journal.pbio.0050063
  28. S. L. Patterson, T. Abel, T. A. Deuel, K. C. Martin, J. C. Rose, E. R. Kandel, "Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice", Neuron, Vol.16, No.6, pp.1137-1145, 1996. DOI: https://doi.org/10.1016/S0896-6273_80140-3
  29. H. Thoenen, "Neurotrophins and neuronal plasticity", Science, Vol.270, No.5236, pp.593-598, 1995. DOI: https://doi.org/10.1126/science.270.5236.593
  30. J. A. Bueller, M. Aftab, S. Sen, D. Gomez-Hassan, M. Burmeister, J. K. Zubieta, "BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects", Biological psychiatry, Vol.59, No.9, pp.812-815, 2006. DOI: https://doi.Org/10.1016/i.biopsych.2005.09.022
  31. T. Frodl, C. Schule, G. Schmitt, C. Bom, T. Baghai, P. Zill, et al., "Association of the brain-derived neurotrophic factor Val66Met polymorphism with reduced hippocampal volumes in major depression", Archives of General Psychiatry, Vol.64, No.4, pp.410-416, 2007. DOI: https://doi.Org/10.1001/archpsyc.64.4.410
  32. M. N. Dretsch, K. Williams, T. Emmerich, G. Crynen, G. Ait-Ghezala, H. Chaytow, et al., "Brain-derived neurotropic factor polymorphisms, traumatic stress, mild traumatic brain injury, and combat exposure contribute to postdeployment traumatic stress", Brain and Behavior, Vol.6, No.l, e00392, 2016. DOI: https://doi.org/10.1002/brb3.392
  33. L. Zhang, X. X. Li, X. Z. Hu, "Post-traumatic stress disorder risk and brain-derived neurotrophic factor Val66Met", World Journal of Psychiatry, Vol.6, No.l, pp.1-6, 2016. DOI: https://doi.org/10.5498/wip.v6.il.1
  34. N. Kozlovsky, M. A. Matar, Z. Kaplan, M. Kotler, J. Zohar, H. Cohen, "Long-term down-regulation of BDNF mRNA in rat hippocampal CA1 subregion correlates with PTSD-like behavioural stress response", International Journal of Neuropsycho- pharmacology", Vol.10, No.6, pp.741-758, 2007. DOI: https://doi.org/10.1017/S 1461145707007560
  35. S. Murakami, H. Imbe, Y. Morikawa, C. Kubo, E. Senba, "Chronic stress, as well as acute stress, reduces BDNF mRNA expression in the rat hippocampus but less robustly", Neuroscience research, Vol.53, No.2, pp. 129-139, 2005. DOI: https://doi.Org/10.1016/i.neures.2005.06.008
  36. J. Tsuru, Y. Tanaka, Y. Ishitobi, Y. Maruyama, A. Inoue, A. Kawano, et al., "Association of BDNF Val66Met polymorphism with HPA and SAM axis reactivity to psychological and physical stress", Neuropsychiatr Dis Treat, Vol.10, pp.2123-2133, 2014. DOI: https://doi.Org/10.2147/ndt.s68629
  37. M. Schaaf, E. De Kloet, E. Vreugdenhil, "Corticosterone effects on BDNF expression in the hippocampus implications for memory formation", Stress, Vol.3, No.3, pp.201-208, 2000. DOI: https://doi.org/10.3109/10253890009Q01124
  38. D. Suri, V. A. Vaidya, "Glucocorticoid regulation of brain-derived neurotrophic factor: Relevance to hippocampal structural and functional plasticity", Neuroscience, Vol.239, pp. 196-213, 2013. DOI: http://dx.doi.Org/10.1016/i.neuroscience.2012.08.065