Browse > Article
http://dx.doi.org/10.5762/KAIS.2018.19.12.227

Relationship between psychological stress and hippocampus volume through meta-analysis  

Jo, Min-kyung (Department of Psychology, Pusan National University)
Hong, Changhee (Department of Psychology, Pusan National University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.19, no.12, 2018 , pp. 227-236 More about this Journal
Abstract
This study was conducted to define hippocampal volume differences between a stress-laid group and normal individual group via meta-analysis. This investigation included studies that contained hippocampal volume measurements in association with stress from 1990 to 2016. Magnetic resonance imaging (MRI) measurements of hippocampal volumes were used to determine the mean size, standard deviation and sample size. The pooled effect size was measured by the standardized mean difference (SMD) with a 95% confidence interval. This meta-analysis included 13 studies comprising 374 stress subjects and 439 normal subjects. Eight studies targeted war-related veterans and holocaust survivors, while five targeted personal trauma associated with childhood abuse, rape, accident or financial hardship. The overall mean effect size (Hedges' g) was -0.70 (-1.04; -0.37). Overall, the SMD value was -0.70, with a moderate effect size, but high heterogeneity. Depending on the characteristics of the stressor, studies were divided by subgroups of war-related veterans and subjects with personal trauma and then analyzed again. In the war-related subgroup, the Hedges' g was -0.47 (-0.78; -0.16), while in the personal stressor-related subgroup it was -0.91 (-1.57; -0.26). These results indicate that there was a significant negative correlation between psychological stress and hippocampal volume.
Keywords
hippocampal volume; stress; Meta-analysis; war-related stress; personal trauma;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. E. Zimmerman, A. Ezzati, M. J. Katz, M. L. Lipton, A. M. Brickman, M. J. Sliwinski, R. B. Lipton, "Perceived Stress Is Differentially Related to Hippocampal Subfield Volumes among Older Adults", PLoS One, Vol.ll, No.5, pp.eO154530. DOI: https://doi.org/10.1371/joumal.pone.0154530
2 T. Gorbach, S. Pudas, A. Lundquist, G. Oradd, M. Josefsson, A. Salami, et al., "Longitudinal association between hippocampus atrophy and episodic-memory decline", Neurobiology of Aging, Vol.51, pp. 167-176, 2017. DOI: https://dx.doi.org/10.1016/j.neurobiolaging.2016.12.002   DOI
3 A. Jatzko, S. Rothenhofer, A. Schmitt, C. Gaser, T. Demirakca, W. Weber-Fahr, et al., "Hippocampal volume in chronic posttraumatic stress disorder (PTSD): MRI study using two different evaluation methods", Journal of Affective Disorders, Vol.94, No. 1-3, pp.121-126, 2006. DOI: https://doi.Org/10.1016/i.iad.2006.03.010   DOI
4 A. Vyas, R. Mitra, B. S. Rao, S. Chattarji, "Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons", Journal of Neuroscience, Vol.22, No. 15, pp.6810-6818, 2002. DOI: https://doi.org/10.1523/JNEURQSCI.22-15-06810.2002   DOI
5 J. D. Bremner, J. Licinio, A. Darnell, J. H. Krystal, M. J. Owens, S. M. Southwick, et al., "Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder", American Journal of Psychiatry, Vol.154, pp.624-629, 1997. DOI: https://doi.org/lo! 1176/ajp. 154.5.624   DOI
6 Z. H. Cheung, W. H. Chin, Y. Chen, Y. P. Ng, N. Y. Ip, "Cdk5 is involved in BDNF-stimulated dendritic growth in hippocampal neurons", PLoS Biol, Vol.5, No.4, e63. DOI: https://doi.org/10.137l/joumal.pbio.0050063   DOI
7 S. L. Patterson, T. Abel, T. A. Deuel, K. C. Martin, J. C. Rose, E. R. Kandel, "Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice", Neuron, Vol.16, No.6, pp.1137-1145, 1996. DOI: https://doi.org/10.1016/S0896-6273_80140-3   DOI
8 D. Miller, J. O'callaghan, "Aging, Stress and The Hippocampus", Ageing research reviews, Vol.4, No.2, pp. 123-140, 2005. DOI: https://doi.org/10.1016/j.arr.2005.03.002   DOI
9 H. M. Duvemoy, The Human Hippocampus: Functional Anatomy, Vascularization and Serial Sections with MRI. p. 6-25, Springer Science & Business Media, 2005.
10 J. Kieman, R. Rajakumar, Barr's the human nervous system: an anatomical viewpoint. Lippincott Williams & Wilkins, 2013.
11 J. O'Keefe, J. Dostrovsky, "The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat", Brain Research, Vol.34, No.l, pp. 171-175, 1971. DOI: http://dx.doi.org/10.1016/0006-8993(7n90358-l   DOI
12 N. J. Broadbent, L. R. Squire, R. E. Clark, "Spatial memory, recognition memory, and the hippocampus", Proceedings of the National Academy of Sciences of the United States of America, Vol.101, No.40, pp. 14515-14520, 2004. DOI: https://doi.org/10.1073/pnas.0406344101   DOI
13 T. Frodl, V. O'Keane, "How does the brain deal with cumulative stress? A review with focus on developmental stress, HP A axis function and hippocampal structure in humans", Neurobiology of Disease, Vol.52, pp,24-37, 2013. DOI: http://dx.doi.Org/10.1016/i.nbd.2012.03.012   DOI
14 B. McNaughton, C. Bames, J. Gerrard, K. Gothard, M. Jung, J. Knierim, et al., "Deciphering the hippocampal polyglot: the hippocampus as a path integration system", Journal of Experimental Biology, Vol.199, No.l, pp. 173-185, 1996.
15 T. Bartsch, R. Schofeld, F. J. Muller, K. Alfke, B. Leplow, J. Aldenhoff, et al., "Focal Lesions of Human Hippocampal CA1 Neurons in Transient Global Amnesia Impair Place Memory", Science, Vol.328, No.5984, pp. 1412-1415, 2010. DOI: https://doi.org/10.1126/science.1188160   DOI
16 C. Zarow, H. V. Vinters, W. G. Ellis, M. W. Weiner, D. Mungas, L. White, H. C. Chui, "Correlates of Hippocampal Neuron Number in Alzheimer's Disease and Ischemic Vascular Dementia", Annals of neurology, Vol.57, No.6, pp. 896-903, 2005. DOI: https://doi.org/10.1002/ana.20503   DOI
17 G. A. Higgins, D. A. Lewis, S. Bahmanyar, D. Goldgaber, D.C. Gajdusek, W. G. Young, et al., "Differential regulation of amyloid-beta-protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease", Proceedings of the National Academy of Sciences, Vol.85, No.4, pp. 1297-1301, 1988. DOI: https://doi.org/10.1073/pnas.85.4.1297   DOI
18 C. D. Conrad, J. B. Ortiz, J. M. Judd, "Chronic Stress and Hippocampal Dendritic Complexity: Methodological and Functional Considerations", Physiology & Behavior, Vol.178, pp.66-81, 2017. DOI: https:"doi.org/ 10.1016/j .physbeh.2016.11.017   DOI
19 B. E. Leonard, "HPA and immune axes in stress: involvement of the serotonergic system", Neuroimmunomodulation, Vol.13, No.5-6, pp.268-276, 2006. DOI: https://doi.Org/10.l159/000104854   DOI
20 C. Heim, D. J. Newport, T. Mletzko, A. H. Miller, C. B. Nemeroff, "The link between childhood trauma and depression: insights from HPA axis studies in humans", Psychoneuroendocrinology, Vol.33, No.6, pp.693-710, 2008. DOI: https://doi.org/10.1016/j.psyneuen.2008.03.008   DOI
21 J. D. Bremner, P. Randall, E. Vermetten, L. Staib, R. A. Bronen, C. Mazure, et al., "Magnetic Resonance Imaging-Based Measurement of Hippocampal Volume in Posttraumatic Stress Disorder Related to Childhood Physical and Sexual Abuse-A Preliminary Report", Biological psychiatry, Vol.41, No.l, pp.23-32, 1997. DOI: https://doi.org/10.1016/소)006-3223(96)00162-X   DOI
22 J. D. Bremner, M. Vythilingam, E. Vermetten, J. Adil, S. Khan, A. Nazeer, et al., "Cortisol response to a cognitive stress challenge in posttraumatic stress disorder (PTSD) related to childhood abuse", Psychoneuroendocrinology, Vol.28, No.6, pp.733-750, 2003. DOI: https://doi.org/10.1016/S0306-4530(02')00067-7   DOI
23 T. V. Gurvits, M. E. Shenton, H. Hokama, H. Ohta, N. B. Lasko, M. W. Gilbertson, et al., "Magnetic Resonance Imaging Study of Hippocampal Volume in Chronic, Combat-Related Posttraumatic Stress Disorder", Biological psychiatry, Vol.40, No. 11, pp. 1091-1099, 1996. DOI: https://doi.org/10.1016/S0006-3223(96)00229-6   DOI
24 D. G.Baker, S. A. West, W. E. Nicholson, N. N. Ekhator, J. W. Kasckow, K. K. Hill, et al., "Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder", American Journal of Psychiatry, Vol.156, No.4, pp.585-588, 1999.
25 B. M. Elzinga, C. G. Schmahl, E. Vermetten, R. van Dyck, J. D. Bremner, "Higher cortisol levels following exposure to traumatic reminders in abuse-related PTSD", Neuropsychopharmacology, Vol.28, No.9, pp. 1656-1665, 2003 DOI: https://doi.org/10.1038/sj.npp.1300226   DOI
26 R. Yehuda, "Post-traumatic stress disorder", New England journal of medicine, Vol.346, No.2, pp. 108-114, 2002. DOI: https://doi.org/10.1056/NEJMraQ 12941   DOI
27 R. Yehuda, D. Boisoneau, M. T. Lowy, E. L. Giller, "Dose-response changes in plasma cortisol and lymphocyte glucocorticoid receptors following dexamethasone administration in combat veterans with and without posttraumatic stress disorder", Archives of General Psychiatry, Vol.52, No.7, pp.583-593, 1995. DOI: https://doi.org/10.1001/archpsyc.1995.03950190065010   DOI
28 G. Schwarzer, J. R. Carpenter, G. Rucker, Meta-analysis with R, Springer, 2015.
29 T. Frodl, C. Schule, G. Schmitt, C. Bom, T. Baghai, P. Zill, et al., "Association of the brain-derived neurotrophic factor Val66Met polymorphism with reduced hippocampal volumes in major depression", Archives of General Psychiatry, Vol.64, No.4, pp.410-416, 2007. DOI: https://doi.Org/10.1001/archpsyc.64.4.410   DOI
30 J. A. Bueller, M. Aftab, S. Sen, D. Gomez-Hassan, M. Burmeister, J. K. Zubieta, "BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects", Biological psychiatry, Vol.59, No.9, pp.812-815, 2006. DOI: https://doi.Org/10.1016/i.biopsych.2005.09.022   DOI
31 M. N. Dretsch, K. Williams, T. Emmerich, G. Crynen, G. Ait-Ghezala, H. Chaytow, et al., "Brain-derived neurotropic factor polymorphisms, traumatic stress, mild traumatic brain injury, and combat exposure contribute to postdeployment traumatic stress", Brain and Behavior, Vol.6, No.l, e00392, 2016. DOI: https://doi.org/10.1002/brb3.392
32 L. Zhang, X. X. Li, X. Z. Hu, "Post-traumatic stress disorder risk and brain-derived neurotrophic factor Val66Met", World Journal of Psychiatry, Vol.6, No.l, pp.1-6, 2016. DOI: https://doi.org/10.5498/wip.v6.il.1   DOI
33 N. Kozlovsky, M. A. Matar, Z. Kaplan, M. Kotler, J. Zohar, H. Cohen, "Long-term down-regulation of BDNF mRNA in rat hippocampal CA1 subregion correlates with PTSD-like behavioural stress response", International Journal of Neuropsycho- pharmacology", Vol.10, No.6, pp.741-758, 2007. DOI: https://doi.org/10.1017/S 1461145707007560   DOI
34 S. Murakami, H. Imbe, Y. Morikawa, C. Kubo, E. Senba, "Chronic stress, as well as acute stress, reduces BDNF mRNA expression in the rat hippocampus but less robustly", Neuroscience research, Vol.53, No.2, pp. 129-139, 2005. DOI: https://doi.Org/10.1016/i.neures.2005.06.008   DOI
35 H. Thoenen, "Neurotrophins and neuronal plasticity", Science, Vol.270, No.5236, pp.593-598, 1995. DOI: https://doi.org/10.1126/science.270.5236.593   DOI
36 D. Suri, V. A. Vaidya, "Glucocorticoid regulation of brain-derived neurotrophic factor: Relevance to hippocampal structural and functional plasticity", Neuroscience, Vol.239, pp. 196-213, 2013. DOI: http://dx.doi.Org/10.1016/i.neuroscience.2012.08.065   DOI
37 J. Tsuru, Y. Tanaka, Y. Ishitobi, Y. Maruyama, A. Inoue, A. Kawano, et al., "Association of BDNF Val66Met polymorphism with HPA and SAM axis reactivity to psychological and physical stress", Neuropsychiatr Dis Treat, Vol.10, pp.2123-2133, 2014. DOI: https://doi.Org/10.2147/ndt.s68629
38 M. Schaaf, E. De Kloet, E. Vreugdenhil, "Corticosterone effects on BDNF expression in the hippocampus implications for memory formation", Stress, Vol.3, No.3, pp.201-208, 2000. DOI: https://doi.org/10.3109/10253890009Q01124   DOI