DOI QR코드

DOI QR Code

Concrete Strength Prediction Neural Network Model Considering External Factors

외부영향요인을 고려한 콘크리트 강도예측 뉴럴 네트워크 모델

  • Choi, Hyun-Uk (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Lee, Seong-Haeng (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Moon, Sungwoo (Department of Civil and Environmental Engineering, Pusan National University)
  • 최현욱 (부산대학교 사회환경시스템공학과) ;
  • 이성행 (부산대학교 사회환경시스템공학과) ;
  • 문성우 (부산대학교 사회환경시스템공학과)
  • Received : 2018.08.14
  • Accepted : 2018.12.07
  • Published : 2018.12.31

Abstract

The strength of concrete is affected significantly not only by the internal influence factors of cement, water, sand, aggregate, and admixture, but also by the external influence factors of concrete placement delay and curing temperature. The objective of this research was to predict the concrete strength considering both the internal and external influence factors when concrete is placed at the construction site. In this study, a concrete strength test was conducted on the 24 combinations of internal and external influence factors, and a neural network model was constructed using the test data. This neural network model can predict the concrete strength considering the external influence factors of the concrete placement delay and curing temperature when concrete is placed at the construction site. Contractors can use the concrete strength prediction neural network model to make concrete more robust to external influence factors during concrete placement at a construction site.

콘크리트 강도는 시멘트, 물, 자갈, 모래 그리고 혼화재 등 내부영향요인뿐만 아니라 실제 현장에서 발생하는 현장기온과 타설지연시간 등 외부영향요인의 영향을 받게 된다. 본 연구의 목적은 콘크리트 배합설계 시 내부영향요인과 외부영향요인을 고려하여 현장 콘크리트 타설시 최적의 콘크리트 강도를 확보하는 것이다. 본 연구에서는 내부영향요인과 외부영향요인에 대한 수준을 정의하고, 모두 24개의 조합에 대한 콘크리트 강도 테스트를 한 후 콘크리트 강도예측 뉴럴 네트워크 모델을 개발했다. 본 콘크리트 강도예측 뉴럴 네트워크 모델은 현장 콘크리트 타설 시 현장기온과 타설지연시간을 고려하여 콘크리트 강도를 예측하는 기능을 제공한다. 본 콘크리트 강도예측 뉴럴 네트워크 모델은 내부영향요인과 외부영향요인을 분석하고 실제 현장에서 콘크리트를 타설할 때 양생온도와 타설지연시간을 뉴럴 네트워크 입력변수로 처리하여 콘크리트 강도를 예측하는 기능을 제공한다. 시공사는 콘크리트 강도예측 결과를 활용하여 콘크리트 배합을 조정함으로써 현장타설 콘크리트 강도를 관리할 수 있을 것이다.

Keywords

SHGSCZ_2018_v19n12_7_f0001.png 이미지

Fig. 1. Research procedure

SHGSCZ_2018_v19n12_7_f0002.png 이미지

Fig. 2. Combination of concrete mix design

SHGSCZ_2018_v19n12_7_f0003.png 이미지

Fig. 3. Neural network model architecture

SHGSCZ_2018_v19n12_7_f0004.png 이미지

Fig. 4. Neural network training architecture in Matlab

SHGSCZ_2018_v19n12_7_f0005.png 이미지

Fig. 5. Regression plot of neural network (X axis = target of neural network and Y axis = actual output received by neural network)

Table 1. Performance analysis considering internal and external variables in concrete mix design

SHGSCZ_2018_v19n12_7_t0001.png 이미지

Table 2. Neural network data set for testing concrete performance

SHGSCZ_2018_v19n12_7_t0002.png 이미지

References

  1. Y. C. Kim, W. S. Yoo, Y. S. Shin, "Application of Artificial Neural Networks to Prediction of Construction Safety Accidents", Journal of the Korean Society of Hazard Mitigation, vol. 17, no. 1, pp. 7-14, 2017. DOI: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4700899 https://doi.org/10.9798/KOSHAM.2017.17.1.7
  2. G. Taguchi, Introduction to quality engineering, Asian Productivity Organization, Tokyo, 1986.
  3. S. H. Yoyok, B. M. Sabarudin, "Taguchi Experiment Design for Investigation of Freshened Properties of Self-Compacting Concrete", American Journal of Engineering and Applied Sciences, vol. 3, no. 2, pp. 300-306, 2014. DOI: http://thescipub.com/abstract/10.3844/ajeassp.2010.300.306
  4. M. F. Nuruddin, R. Bayuaji, "Application of Taguchi's approach in the optimization of mix proportion for Microwave Incinerated Rice Husk Ash Foamed Concrete", International Journal of Civil & Environmental Engineering, vol.9, no.9, pp. 121-129, 2009. DOI: http://www.ijens.org/1925091%20IJCEE.pdf
  5. A.H. Boussabaine, "The use of artificial neural networks in construction management: a review", Journal Construction Management and Economics, vol. 14, no. 5, pp. 427-436, 1996. DOI: https://www.tandfonline.com/doi/abs/10.1080/014 461996373296
  6. W. K. Yeo, Y. M. Seo, S. Y. Lee, H. K. Jee, "Study on Water Stage Prediction Using Hybrid Model of Artificial Neural Network and Genetic Algorithm", Journal of Korea Water Resources Association, vol. 43, no. 8, pp. 721-731, 2010. DOI: https://academic.naver.com/article.naver?docid=244747032 https://doi.org/10.3741/JKWRA.2010.43.8.721
  7. H. D. Han, J. H. Kim, J. H. Youn, J. W. Seo, "Road Construction Cost Estimation Model in the Planning Phase Using Artificial Neural Network", Journal of Korean Society of Civil Engineers, vol. 6, no. D, pp. 829-837, 2011.
  8. R. H. Kim, J. S. Bang, Y. R. Kim, Y. C. Song, T. G. Lee, S. W. Choi, "Performance Evaluation according to Mixing of Concrete." Proceedings of Korea Concrete Institute, pp. 469-470, 2017.
  9. J. H. On, S. K. Lee, Y. S. Kim, "A study on optimum mix design model of 60MPa high strength concrete using neural network theory", Proceedings of Architectural Institute of Korea, pp. 509-510, 2013.
  10. J. W. Oh, J. H. Lee, I. W. Lee, "Use of neural networks on concrete mix design", Journal of Korea Concrete Institute, vol. 9, no. 2, pp.145-151, 1997. DOI: http://koasas.kaist.ac.kr/handle/10203/69048
  11. D.K. Kim, J.J. Lee, S.K. Chang, B.Y. Lim, "Prediction of compressive strength of concrete using probabilistic neural network", Proceedings of Korean Society of Civil Engineers, pp. 1451-1454, 2003.
  12. S. Y. Shin, Y. J. Lee, Y. S. Kim, "A study on the mix design model of 60MPa class high-strength concrete using neural network", Journal of Architectural Institute of Korea, vol. 16, no. 3, pp. 169-176, 2014. UCI: G704-001715.2014.16.3.014
  13. Mathworks, Matlab R2017b Documentation , 2017.
  14. A. G. Ismaeel, D. Y. Mikhail, "Effective data mining technique for classification cancers via mutations in gene using neural network", International Journal of Advanced Computer Science and Applications (IJACSA), vol. 7, no. 7, pp. 69-76, 2016. DIO: https://arxiv.org/ftp/arxiv/papers/1608/1608.02888.pdf
  15. H.S. Jung, Rainfall Adjust and Forecasting in Seoul Using a Artificial Neural Network Technique Including a Correlation Coefficient, Master's thesis, Yeonsei University, 2007.