Fig. 1. Preprocessing steps: (a) input sonography, (b) binarized, (c) focused on ROI, and (d) after noise removal.
Fig. 2. Preparation for FCM based quantization. (a) Picks from histogram analysis and (b) Typical membership function for FCM quantization.
Fig. 3. Effect of FCM quantization. (a) Quantized by FCM and (b) Extracted by human (red).
Fig. 4. Examples of successful extractions. (a) Input and (b) Successful extraction.
Fig. 5. Different blood flow area extractions by FCM and K-means: (a) Original input, (b) Extraction by FCM, and (c) Extraction by K-means.
Fig. 6. Failed extractions. (a) Case 1 and (b) Case 2.
References
- S. G. Sheps, "Doppler ultrasound: What is it used for?" 2016 [Internet], Available: https://www.mayoclinic.org/doppler-ultrasound/expert-answers/faq-20058452.
- M. Kelm, "Flow-mediated dilatation in human circulation: diagnostic and therapeutic aspects," American Journal of Physiology-Heart and Circulatory Physiology, vol. 282, no. 1, pp. H1-H5, 2002. DOI: 10.1152/ajpheart.2002.282.1.H1.
- R. A. Harris, S. K. Nishiyama, D. W. Wray, and R. S. Richardson, "Ultrasound assessment of flow-mediated dilation," Hypertension, vol. 55, no. 5, pp. 1075-1085, 2010. DOI: 10.1161/HYPERTENSIONAHA.110.150821.
- D. H. Thijssen, M. A. Black, K. E. Pyke, J. Padilla, G. Atkinson, R. A. Harris, et al., "Assessment of flow-mediated dilation in humans: a methodological and physiological guideline," American Journal of Physiology-Heart and Circulatory Physiology, vol. 300, no. 1, pp. H2-H12, 2011. DOI: 10.1152/ajpheart.00471.2010.
- W. S. Calderon-Gerstein, A. Lopez-Pena, R. Macha-Ramirez, A. Bruno-Huaman, R. Espejo-Ramos, S. Vilchez-Bravo, M. Ramirez-Brena, M. Damian-Mucha, and A. Matos-Mucha, "Endothelial dysfunction assessment by flow-mediated dilation in a high-altitude population," Vascular Health and Risk Management, vol. 13, pp. 421-426, 2017. DOI: 10.2147/VHRM.S151886.
- A. J. Flammer, T. Anderson, D. S. Celermajer, M. A. Creager, J. Deanfield, P. Ganz, et al., "The assessment of endothelial function: from research into clinical practice," Circulation, vol. 126, no. 6, pp. 753-767, 2012. DOI: 10.1161/CIRCULATIONAHA.112.093245.
- B. S. Lee, K. A. Kim, and M. G. Lee, "Comparison of physical fitness, blood lipid, inflammation marker, and cardiovascular function between normal and impaired fasting glucose in elderly women," The Korean Journal of Physical Education, vol. 55, no. 6, pp. 715-725, 2016.
- J. K. Kim, K. A. Kim, H. M. Choi, S. K. Park, and C. L. Stebbins, "Grape seed extract supplementation attenuates the blood pressure response to exercise in prehypertensive men," Journal of Medicinal Food, vol. 21, no. 5, pp. 445-453, 2018. DOI: 10.1089/jmf.2017.0133.
- A. L. Mohamed, J. Yong, J. Masiyati, L. Lim, and S. C. Tee, "The prevalence of diastolic dysfunction in patients with hypertension referred for echocardiographic assessment of left ventricular function," The Malaysian Journal of Medical Sciences, vol. 11, no. 1, pp. 66-74, 2004.
- A. V. Chobanian, G. L. Bakris, H. R. Black, W. C. Cushman, L. A. Green, J. L. Izzo Jr, et al., "Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure," Hypertension, vol. 42, no. 6, pp. 1206-1252, 2003. DOI: 10.1161/01.hyp.0000107251.49515.c2.
- R. Rossi, E. Chiurlia, A. Nuzzo, E. Cioni, G. Origliani, and M. G. Modena, "Flow-mediated vasodilation and the risk of developing hypertension in healthy postmenopausal women," Journal of the American College of Cardiology, vol. 44, no. 8, pp. 1636-1640, 2004. DOI: 10.1016/j.jacc.2004.07.027.
- M. C. Corretti, T. J. Anderson, E. J. Benjamin, D. Celermajer, F. Charbonneau, M. A. Creager, et al., "Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force," Journal of the American College of Cardiology. vol. 39, no. 2, pp. 257-265, 2002. DOI: 10.1016/S0735-1097(01)01746-6.
- T. J. DuBose and A. L. Baker, "Confusion and direction in diagnostic Doppler sonography," Journal of Diagnostic Medical Sonography, vol. 25, no. 3, pp. 173-177, 2009. DOI: 10.1177/8756479309335681.
- S. Rosati, G. Balestra, F. Molinari, U. R. Acharya, and J. S. Suri, "A selection and reduction approach for the optimization of ultrasound carotid artery images segmentation," in Machine Learning in Healthcare Informatics. Heidelberg: Springer, pp. 309-332, 2014. DOI: 10.1007/978-3-642-40017-9_14.
- J. Park, D. H. Song, H. Nho, H. M. Choi, K. A. Kim, H. J. Park, and K. B. Kim, "Automatic segmentation of brachial artery based on fuzzy C-means pixel clustering from ultrasound images," International Journal of Electrical and Computer Engineering, vol. 8, no. 2, pp. 638-643, 2018. DOI: 10.11591/ijece.v8i2.pp638-643.
- K. B. Kim, D. H. Song, and H. J. Park, "Automatic extraction of appendix from ultrasonography with self-organizing map and shape-brightness pattern learning," BioMed Research International, vol. 2016, article ID. 5206268, 2016. DOI: 10.1155/2016/5206268.
- R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. Upper Saddle River, NJ: Prentice-Hall, 2007.
- S. Lloyd, "Least squares quantization in PCM," IEEE Transactions on Information Theory, vol. 28 no. 2, pp 129-137, 1982. DOI: 10.1109/TIT.1982.1056489.
- S. I. Park, H. J. Park, and K. B. Kim, "Appendix analysis from ultrasonography with cubic spline interpolation and K-means clustering," International Journal of Bio-Science and Bio-Technology, vol. 7, no. 1, pp. 1-10, 2015. DOI: 10.14257/ijbsbt.2015.7.1.01.
- A. K. Panda, M. Kumar, M. K. Chaudhary, and A. A. K. Gupta, "Brain tumour extraction from MRI images using K-means clustering," Brain, vol. 4 no. 4, pp 356-359, 2016. DOI: 10.17148/IJIREEICE.2016.4490.
- H. J. Lee, D. H. Song, and K. B. Kim, "Effective computer-assisted automatic cervical vertebrae extraction with rehabilitative ultrasound imaging by using K-means clustering," International Journal of Electrical and Computer Engineering, vol. 6, no. 6, pp 2810-2817, 2016. DOI: 10.11591/ijece.v6i6.pp2810-2817.
Cited by
- Diagnosis of Pet by Using FCM Clustering vol.26, pp.2, 2018, https://doi.org/10.9708/jksci.2021.26.02.039