Fig. 1. Mobility of TiO2 thin films with various annealing temperatures.
Fig. 2. Resistance of TiO2 thin films with various annealing temperatures.
Fig. 3. Carrier concentration of TiO2 thin films with various annealingtemperatures.
Fig. 4. Mobility variation of TiO2 thin film that annealed at 150°C.
Fig. 5. PL spectra of TiO2 thin films with various annealing temperatures. (a) 70°C, (b) 90°C, (c) 110°C, (d) 130oC, (e) 150°C, and (f) 170°C.
Fig. 6. PL spectra of TiO2 thin film annealed at 90°C, 110°C, and 130°C. Fig. 4. Mobility variation of TiO2 thin film that annealed at 150°C.
Fig. 7. Electrical characteristics of TiO2 thin films with various annealing temperatures. (a) Long range, (b) short range, and (c) TiO2 thin film that annealed at 110°C had the lowest current.
Fig. 8. Electrical characteristics in the negative voltage.
References
- H. Kim and S. Choi, "Growth of sheet-like ZnO nanostructures on ZnO nano rods using chemical bath deposition," Applied Science and Convergence Technology, vol. 27, no. 2, pp. 38-41, 2018. DOI: 10.5757/ASCT.2018.27.2.38.
- T. Oh, "Tunneling phenomenon of amorphous indium-gallium-zincoxide thin film transistors for flexible display," Electronic Materials Letters, vol. 11, no. 5, pp. 853-861, 2015. DOI: 10.1007/s13391-015-4505-3.
- X. C. Ma, J. Zhang, W. Cai, H. Wang, J. Wilson, Q. Wang, Q. Xin, and A. Song, "A sputtered silicon oxide electrolyte for highperformance thin-film transistors," Scientific Reports, vol. 7, article no. 809, 2017. DOI: 10.1038/s41598-017-00939-6.
- J. S. Shin, M. J. Kim, J. B. Song, N. G. Jeong, J. T. Kim, and J. Y. Yun, "Fluorine Plasma Corrosion Resistance of Anodic Oxide Film Depending on Electrolyte Temperature," Applied Science and Convergence Technology, vol. 27, no. 1, pp. 9-13, 2018. DOI: 10.5757/ASCT.2018.27.1.9.
- S. F. Najam, M. L. P. Tan, and Y. S. Yu, "General SPICE Modeling procedure for double-gate tunnel field-effect transistors," Journal of Information and Communication Convergence Engineering, vol. 14, no. 2, pp. 115-121, 2016. DOI: 10.6109/jicce.2016.14.2.115.
- J. Robertson and R. M. Wallace, "High-K materials and metal gates for CMOS applications," Materials Science and Engineering R: Reports, vol. 88, pp. 1-41. 2015. DOI: 10.1016/j.mser.2014.11.001.
- T. Oh, "Tunneling condition at high schottky barrier and ambipolar transfer characteristics in zinc oxide semiconductor thin film transistor," Materials Research Bulletin, vol. 77, pp. 1-7, 2016. DOI: 10.1016/j.materresbull.2015.11.038.
- T. Oh, "Effect of double Schottky barrier in gallium-zinc-oxide thin film," Transactions on Electrical and Electronic Materials, vol. 18, no. 6, pp. 323-329, 2017. DOI: 10.4313/TEEM.2017.18.6.323.
- W. Y. Uhm, K. K. Ryu, and S. C. Kim, "Design of a 94-GHz single balanced mixer using planar schottky diodes with a nano-dot structure on a GaAs substrate," Journal of Information and Communication Convergence Engineering, vol. 14, no. 1, pp. 35-39, 2016. DOI: 10.6109/jicce.2016.14.1.035.