Fig. 1. As-Is algorithm versus proposed algorithm.
Fig. 2. Process flow of proposed algorithm.
Fig. 3. Procedure for determining the error data.
Fig. 4. Percent of erroneous data detected as erroneous data.
Fig. 5. Judgment error for normal data.
Table 1. Percentage of erroneous data detected
Table 2. Percent of erroneous data detected as erroneous data
Table 3. Number of normal data detected as erroneous data
References
- J. R. Kim, G. W. Shin, H. S. Kim, and S. T. Hong, "A study on cleansing algorithm for outlier data in water supply," in Proceedings of the Korean Institute of Communications and Information Sciences Summer Conference, pp. 19-20, 2017.
- G. W. Choi, K. S. Song, and J. Kang, "Understanding and policy assignment of R&D of deep learning," Korea Institute of S&T Evaluation and Planning, 2016 [Internet], Available: https://www.kistep.re.kr/c3/sub3.jsp?brdType=R&bbIdx=10484.
- S. M. Hong and A. Jang, "The development study on the integrated management system for water information based on ICT," Journal of Korean Society of Environmental Engneers, vol. 39, no. 12, pp. 723-732, 2017. DOI: 10.4491/KSEE.2017.39.12.723.
- S. Baek, C. Seong, S. Choe, Y. Park, and M. Kim, "Mobile water quality monitoring system using ion-selective-electrodes," Journal of the Institute of Electronics and Information Engineers, vol. 55, no. 2, pp. 29-38, 2018. DOI: 10.5573/ieie.2018.55.2.29.
- C. H. Kim, L. S. Kang, and H. J. Kim, "The development of information breakdown structure for integrated management of water filtration plants," Journal of the Korean Society of Civil Engineers, vol. 37, no. 5, pp. 863-869, 2017. DOI: 10.12652/Ksce.2017.37.5.0863.
- V. Q. Nguyen, L. Van Ma, and J. Kim, "LSTM-based anomaly detection on big data for smart factory monitoring," Journal of Digital Contents Society, vol. 19, no. 4, pp. 789-799, 2018. DOI: 10.9728/dcs.2018.19.4.789.
- J. M. Jerez, I. Molina, P. J. Garcia-Laencina, E. Alba, N. Ribelles, M. Martin, and L. Franco, "Missing data imputation using statistical and machine learning methods in a real breast cancer problem," Artificial Intelligence in Medicine, vol. 50, no. 2, pp. 105-115, 2010. DOI: 10.1016/j.artmed.2010.05.002.
- F. Liu, Z. You, W. Shan, and J. Liu, "A grey system based missing sensor data estimation algorithm," in Proceedings of 2012 2nd International Conference on Computer Science and Network Technology, Changchun, China, pp. 482-486, 2012. DOI: 10.1109/ICCSNT.2012.6525982.
- N. I. Nwulu, "Evaluation of machine learning classification algorithms & missing data imputation techniques," in Proceedings of 2017 International Artificial Intelligence and Data Processing Symposium, Malatya, Turkey, pp. 1-5, 2017. DOI: 10.1109/IDAP.2017.8090315.
- Z. C. Lipton, D. C. Kale, and R. Wetzel, "Modeling missing data in clinical time series with RNNs," Proceedings of Machine Learning Research, vol. 56, pp. 253-270, 2016.
Cited by
- An Effect of Genetic Algorithm for Creating a Dataset vol.20, pp.1, 2019, https://doi.org/10.9728/dcs.2019.20.1.127
- 미세먼지 예측 성능 개선을 위한 CNN-LSTM 결합 방법 vol.24, pp.1, 2020, https://doi.org/10.6109/jkiice.2020.24.1.57