Modulative Effect of Human Hair Dermal Papilla Cell Apoptosis by Acertannin from the Barks and Xylems of Acer ginnala Maxim

신나무 유래 Acertannin의 인체 모유두 세포 Apoptosis 조절 효능

  • Joung, Seo Woo (Department of Cosmetology Science, Nambu University) ;
  • Choi, Sun Eun (Department of Cosmetology Science, Nambu University)
  • 정서우 (남부대학교 향장미용학과) ;
  • 최선은 (남부대학교 향장미용학과)
  • Received : 2018.01.18
  • Accepted : 2018.02.27
  • Published : 2018.03.31

Abstract

We isolated gallotannin, 2,6-digalloyl-1,5-anhydroglucitol, known as acertannin (1), from the barks and xylems of Acer ginnala Maxim. It is a genus of Acer species of shrubs in the family Aceraceae. A. ginnala grows in Korea, Japan and Mongolia. We accomplished the structure elucidation by confirming that the result of $^1H$,$^{13}C-NMR$,MS spectrum data was similar to previous references. We measured DPPH and ABTS radical scavenging activity in vitro to evaluate anti-oxidative activities on acertannin isolated from A. ginnala. Acertannin from A. ginnala exhibited potent DPPH and ABTS radical scavenging activities. We examined the antioxidant and apoptosis modulative effects. This examination shows that A. ginnala has not only 1,1-diphenyl-2-picryhydrazyl(DPPH) radical scavenging activity and ABTS radical scavenging activity, but also human hair dermal papilla cell protection effects. These results indicate that the barks and xylems of A. ginnala might be developed as a potent anti-oxidant, hair growth agent, and ingredient for related new functional cosmetic materials.

Keywords

References

  1. Kim, T. J. (2008) Wild flowers and resources plants in Korea (Vol.3), 202-203, Seoul national university press, Seoul.
  2. Im, R. J. (1999) Flora medica coreana (Vol. 1), 249, Agricultural publishing house, Pyongyang.
  3. Woo, L. K. (1962) The chemical structure of acertannin. Yakhak Hoeji 6: 11-16.
  4. Bock, K., LaCour, N. F., Jensen, S. R. and Nielsen, B. J. (1980) The structure of acertannin. Phytochemistry 19: 2033.
  5. Park, W. Y. (1996) Phenolic compounds from Acer ginnala Maxim. Kor. J. Pharmacogn. 27: 212-218.
  6. Choi, Y. H., Han, S. S., Lee, H. O. and Baek, S. H. (2005) Biological activity of bioactive components from Acer ginnala Max. Bull. Korean Chem. Soc. 26: 1450-1452. https://doi.org/10.5012/bkcs.2005.26.9.1450
  7. Cho, H. Y. and Choi, S. E. (2013) Anti-bacterial effect of stems of Acer ginnala Maxim. against MRSA. Kor. J. Aesthet. Cosmetol. 11: 781-785.
  8. Lim, S. M. and Choi, S. E. (2013) Anti-bacterial effect of stems of Acer ginnala Maxim. against Salmonella spp. Korean Public Health Researches. 39: 1-7.
  9. Park, Y. O. and Kim, Y. C. (2008) The Effects of Chamaecyparis obtusa oil on the activities of enzyme relevant to hair growth. J. Kor. Soc. Cosm. 14: 355-364.
  10. Kim, J. H., Sang, M. Y., Choi, J. E. and Son, S. W. (2009) Study of the efficacy of Korean red ginseng in the treatment of androgenic alopecia. J. Ginseng Res. 33: 223-228. https://doi.org/10.5142/JGR.2009.33.3.223
  11. Hatano, T., Edamatsu, R., Hiramatsu, M., Mori, A., Fujita, Y., Yasuhara, T., Yoshida, T. and Okuda, T. (1989) Effects of the interaction of tannins with co-existing substances. VI. : Effects of tannins and related polyphenols on superoxide anion radical, and on 1, 1-Diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 2016-2021. https://doi.org/10.1248/cpb.37.2016
  12. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  13. Boivin, W.A., Jiang, H., Utting, O. B. and Hunt, D. W. C. (2006) Influence of interleukin-1${\alpha}$ on androgen receptor expression and cytokine secretion by cultured human dermal papilla cells. Exp. Dermatol. 15: 784-793.
  14. Burnette, W. N. (1981) Western blotting: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 112: 195-203. https://doi.org/10.1016/0003-2697(81)90281-5
  15. Oltvai, Z. N., Milliman, C. L. and Korsmeyer, S. J. (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609-619. https://doi.org/10.1016/0092-8674(93)90509-O
  16. Sedlak, T. W., Oltvai, Z. N., Yang, E., Wang, K., Boise, L. H., Thompson, C. B. and Korsmeyer, S. J. (1995) Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc. Natl. Acad. Sci. U.S.A. 92: 7834-7838. https://doi.org/10.1073/pnas.92.17.7834
  17. Tsujimoto, Y., Finger, L. R., Yunis, J., Nowell, P. C. and Croce, C. M. (1984) Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226: 1097-1099. https://doi.org/10.1126/science.6093263
  18. Cleary, M. L., Smith, S. D. and Sklar, J. (1986) Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/ immunoglobulin transcript resulting from the t(14;18) translocation. Cell 47: 19-28. https://doi.org/10.1016/0092-8674(86)90362-4
  19. Godon, C., Cordelieres, F. P., Biard, D., Giocanti, N., Megnin-Chanet, F., Hall, J. and Favaudon, V. (2008) PARP inhibition versus PARP-1 silencing: different outcomes in terms of single-strand break repair and radiation susceptibility. Nucleic Acids Res. 36: 4454-4464.
  20. Schultz, N., Lopez, E., Saleh-Gohari, N. and Helleday, T. (2003) Poly(ADP-ribose) polymerase(PARP-1) has a controlling role in homologous recombination. Nucleic Acids Res. 31: 4959-4964. https://doi.org/10.1093/nar/gkg703
  21. Alnemri, E. S., Livingston, D. J., Nicholson, D. W., Salvesen, G., Thornberry, N. A., Wong, W. W. and Yuan, J. (1996). Human ICE/CED-3 protease nomenclature. Cell 87: 171.
  22. Harrington, H. A., Ho, K. L., Ghosh, S. and Tung, K. C. (2008) Construction and analysis of a modular model of caspase activation in apoptosis. Theor. Biol. Med. Model 5: 26.