DOI QR코드

DOI QR Code

고온 수침 환경에서 UPE 겔코트 코팅된 지중 매설 파이프용 GFRP의 열화 및 크랙 발생 특성에 관한 연구

Study on the Crack and Thermal Degradation of GFRP for UPE Gelcoat Coated Underground Pipes Under the High Temperature Water-Immersion Environment

  • 투고 : 2018.10.17
  • 심사 : 2018.12.06
  • 발행 : 2018.12.30

초록

유리섬유강화폴리에스테르 복합소재는 지중 매설 파이프, 탱크용 구조재, 선체 등 가혹한 환경에서 구조재로 널리 사용되고 있으며, 장기 내수성을 필요로 하는 소재이다. 특히, 물에 잠겨 있을 때 삼투압으로 인하여 겔코트와 복합소재의 박리 등 열화가 진행된다. 본 연구에서는 지중 매설 파이프로 활용되는 GFRP 복합소재의 내구성 향상을 위해 인퓨전(진공성형) 공정으로 UPE (unsaturated polyester) 겔코트 표면 처리한 복합소재를 제작하여, 고온 수침 환경 ($65^{\circ}C$, $75^{\circ}C$, $85^{\circ}C$)에서의 표면 결함 및 크랙 발생과 경도 변화 특성을 확인하였다. 마이크로 CT 단층 촬영을 통하여 수침 온도에 따른 크랙의 침투 깊이를 조사하였으며, $75^{\circ}C$$85^{\circ}C$ 조건에서 크랙이 복합소재까지 침투하여 내구성을 저하시키는 것으로 확인되었다. 최초 크랙이 발생하는 지점을 고장시간으로 정의하고 아레니우스식을 활용하여 $23^{\circ}C$ 상온에서의 수명 예측을 실시하였다. 본 연구로 토목, 건축, 해양산업분야 등 겔코트가 적용되는 다양한 산업분야의 신뢰성 평가에 응용될 수 있을 것으로 기대된다.

Glass fiber reinforced polyester (GFRP) composites are widely used as structural materials in harsh environment such as underground pipes, tanks and boat hulls, which requires long-term water resistance. Especially, these materials might be damaged due to delamination between gelcoat and composites through an osmotic process when they are immersed in water. In this study, GFRP laminates were prepared by surface treatment of UPE (unsaturated polyester) gelcoat by vacuum infusion process to improve the durability of composite materials used in underground pipes. The composite surface coated with gelcoat was examined for surface defects, cracking, and hardness change characteristics in water-immersion environments (different temperatures of $60^{\circ}C$, $75^{\circ}C$, and $85^{\circ}C$). The penetration depth of cracks was investigated by micro CT imaging according to water immersion temperature. It was confirmed that cracks developed into the composites material at $75^{\circ}C$ and $85^{\circ}C$ causing loss of durability of the materials. The point at which the initial crack initiated was defined as the failure time and the life expectancy at $23^{\circ}C$ was measured using the Arrhenius equation. The results from this study is expected to be applied to reliability evaluation of various industrial fields where gelcoat is applied such as civil engineering, construction, and marine industry.

키워드

HKTHB3_2018_v17n4_169_f0001.png 이미지

Fig. 1. Application example of GFRP in water environment

HKTHB3_2018_v17n4_169_f0002.png 이미지

Fig. 2. Fiber reinforced material

HKTHB3_2018_v17n4_169_f0003.png 이미지

Fig. 3. Infusion manufacturing method

HKTHB3_2018_v17n4_169_f0004.png 이미지

Fig. 4. Preparation of water-immersion test (laboratory aging)

HKTHB3_2018_v17n4_169_f0005.png 이미지

Fig. 5. Photo images of gelcoat surface after distilled water aging at various immersion temperatures

HKTHB3_2018_v17n4_169_f0006.png 이미지

Fig. 6. Number of gelcoat surface cracks as a function of aging time at various immersion temperatures

HKTHB3_2018_v17n4_169_f0007.png 이미지

Fig. 7. The number of gelcoat cracks on the surface and the depth of crack after immersion test at various temperatures

HKTHB3_2018_v17n4_169_f0008.png 이미지

Fig. 8. Micro CT scan images of GFRP laminates after water immersion for 30 days

HKTHB3_2018_v17n4_169_f0009.png 이미지

Fig. 9. FTIR results from sample aged for 30 days at various immersion temperatures

HKTHB3_2018_v17n4_169_f0010.png 이미지

Fig. 10. Arrhenius plots, initial crack occurrence time of Gelcoat after immersion test at high temperature (65℃, 75℃, 85℃)

HKTHB3_2018_v17n4_169_f0011.png 이미지

Fig. 11. Life time of the gelcoat as a function of temperature

Table 1. Experimental values of Polyester Gelcoat measured

HKTHB3_2018_v17n4_169_t0001.png 이미지

Table 2. Aging test conditions

HKTHB3_2018_v17n4_169_t0002.png 이미지

Table 3. Shore D type hardness of Gelcoat resin immersed in distilled water at various temperatures for 24 hours

HKTHB3_2018_v17n4_169_t0003.png 이미지

Table 4. First crack (h) in 65℃, 75℃, and 85℃ Ortho type gelcoat specimens

HKTHB3_2018_v17n4_169_t0004.png 이미지

참고문헌

  1. Lee, H. K. and Park, J. S. (2015), "An Investigation of Structural Behavior of Underground Buried GFRP Pipe in Cooling Water Intake for the Nuclear Power Plant", Korean Society for Advanced Composite Structures, Vol.6, No.2, pp.91-92. https://doi.org/10.11004/kosacs.2015.6.2.091
  2. Cho, S. D., Lee, D. Y., Han, S. K. and Kim, N. H. (2002), "Economic Analysis Considering Traffic Characteristics for the Glass Fiber Sheet Reinforced Asphalt Pavement", J. Korean Geosynthetics Society, Vol.1, No.1, pp.58-60.
  3. Cho, S. D. and Lee, D. Y. (2011), "Performance Evaluation of Asphalt Pavement Peinforced with Glass Fiber Sheet Type of Geosynthetics", J. Korean Geosynthetics Society, Vol.10, No.3, pp.1-3. https://doi.org/10.12814/JKGSS.2011.10.3.001
  4. Park, J. S., Kim, S. H., Kim, E. H. and Yoon, S. J. (2011), "A Safety Evaluation on the Ring Deflection of Buried GRP Pipes", Korean Society for Advanced Composite Structures, Vol.2, No.2, pp.26-27. https://doi.org/10.11004/kosacs.2011.2.2.026
  5. Rockett, T. J. and Rose, V. (1987), "Causes of Boat hull blistering", US. Coast Guard Grant Report #1501.83, pp. 2-12.
  6. Broughton, W. (2012), "Assessing the moisture resistance of adhesives for marine environments", Adhesives in Marine Engineering, pp.155-159.
  7. Landowski, M., Budzik, M. and Imielinska, K. (2012), "Water sorption and blistering of GFRP laminate with varying structure", Advances in materials science, Vol.12, No.4 pp. 23-29.
  8. Landowski, M., Budzik, M. and Imielinska, K. (2011), "Degradation of Gel-Coat Layer in Glass/Polyester Laminate in Seawater Environment", Solid State Phenomena, Vol.183, pp.107-110. https://doi.org/10.4028/www.scientific.net/SSP.183.107
  9. Norwood, L. and Holton, E. C. (1991), "The effect of poor interlaminar adhesion on blister formation in GRP in contact with water", Materials & Design, Vol.12 No.2 pp.75-79. https://doi.org/10.1016/0261-3069(91)90108-G
  10. Davies, P. and Evrard, G. (2007), "Accelerated ageing of polyurethanes for marine applications", Polymer Degradation and Stability, Vol.92, No.8, pp.1455-1464. https://doi.org/10.1016/j.polymdegradstab.2007.05.016
  11. Lemoine, L. (1995), "Effect of Water Absorption and Osmotic Degradation on Long-Term Behavior of Glass Fiber Reinforced Polyester", Vol.16, No.5, pp.349-356. https://doi.org/10.1002/pc.750160502
  12. Jang, M. J., Kim, S. H., Lee. Y. G. and Yoon, S. J. (2013), "Structural Behavior of Buried GRP Pipe in Cooling Water Intake for the Nuclear Power Plant", KSCE Conference & Civil Expo 2013, jeongseon, pp.1168-1169.
  13. Maxwell, A. S., Broughton, W. R., Dean, G. and Sims, G. D. (2005), Review of accelerated ageing methods and lifetime prediction techniques for polymeric materials, NPL Report, pp.13-18.
  14. Park, J. Y. (2011), "A Study on the Relations between the Degree of Vacuum and Mechanical Characteristics for Vacuum Infusion Method of FRP Hull", Master Thesis, Pusan National University, pp.5-6.
  15. FRIBERG, E. and Olsson, J. (2014), "Application of fibre reinforced polymer materials in road bridges", Master Thesis, Chalmers university of technology, pp.121.
  16. Korean Agency for Technology and Standards. (2016) ,Plastics and ebonite-Determination of indentation hardness by means of a durometer(Shore hardness), KS M ISO 868, pp.1-5.
  17. Landowski, M., Budzik, M. and Imielinska, K. (2014) "Water absorption and blistering of glass fibre-reinforced polymer marine laminates with nanoparticle-modified coating", Advances in materials science, Vol.48, No.23, pp.2809-2810.
  18. Visco, A. M., Brtancato, V. and Campo, N. (2011), "Degradation effects in polyester and vinyl ester resins induced by accelerated aging in seawater" Journal of Composite Materials, pp.12-14.
  19. Awham, M. H. (2011), "Effect of environmental conditions Shore hardness values of polymer blend", Journal of Al-Mustansyriah University, Vol.16, No.69, pp,75-76.
  20. Zaynab, N. R. (2013), "Study of the effect of the variation effect of water temperatures on shore (D) hardness for some polymers", Journal of Al-Nahrain University, Vol.16, No.3, pp.112-113. https://doi.org/10.22401/JNUS.16.1.16
  21. Woo, C. S., Park, H. S., Choi, B. I., Yang, S. C., Jang, S. Y. and Kim, E. (2009), "Useful lifetime prediction of rail-pad by using the accelerated heat aging test", Korean Society for Railway, Vol.2009, No.5, pp.1013-1015.