DOI QR코드

DOI QR Code

Studies on antioxidant, anti-inflammatory and tyrosinase inhibitory activity of Ganoderma lucidum fermented Artemisia capillaris extract

인진쑥 영지버섯 균사 발효 추출물의 항산화, 항염 및 티로시나제억제 활성 연구

  • Jeong, Yong-Un (Department of Integrated Biosciences, College of Biomedical and Health Science, Konkuk University) ;
  • Lee, Chang-Soo (Department of Integrated Biosciences, College of Biomedical and Health Science, Konkuk University)
  • 정용운 (건국대학교 의료생명대학 바이오융합과학부) ;
  • 이창수 (건국대학교 의료생명대학 바이오융합과학부)
  • Received : 2018.11.29
  • Accepted : 2018.12.11
  • Published : 2018.12.31

Abstract

This study investigated whether Ganoderma lucidum (Y2)-mediated fermentation of Artemisia capillaris extract (ACE) could synergistically enhance its antioxidant, anti-inflammatory, and tyrosinase-inhibiting activities. Both G. lucidum extract and fermented ACE exhibited 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability, but with poorer efficacy than ACE (even at a low ACE concentration). Viability of RAW264.7 macrophages was significantly reduced in the presence of ACE (150 mg/mL and above). However, this effect was greatly mitigated upon G. lucidum-mediated ACE fermentation. Additionally, relative to the same concentration ($25{\mu}g/mL$) of G. lucidum mycelial extract, ACE exhibited an improved ability to significantly inhibit RAW264.7 macrophage nitric oxide (NO) production. Finally, relative to the same concentration ($200{\mu}g/mL$) of a positive control (arbutin), fermented ACE exhibited an approximately 3.66 times higher capacity for tyrosinase inhibition. These results suggest that G. lucidum-fermented ACE possesses enhanced tyrosinase-inhibiting activity and may be of utility as a skin-lightening agent.

최근 소득이 증가하고 건강에 관심이 증가함에 따라 단순한 미용 화장품보다 여러 가지 기능성을 가진 화장품에 대한 관심이 높아지고 있다. 이에 따라 각종 천연물에 대하여 항산화, 항염 및 미백 등의 활성을 검증하는 다양한 연구가 진행되고 있으며, 본 연구에서도 천연물의 활성과 더불어 다양한 약리작용이 있는 영지버섯 균사체와의 발효에 의한 시너지 효과를 규명하고자 하였다. 인진쑥 영지균사발효 추출물의 DPPH radical 소거 활성은 영지버섯 균사추출물과 유사하게 농도 의존적으로 증가하는 것이 확인되었으나, 저농도의 인진쑥 추출물 보다는 다소 감소하는 것이 확인되었다. 인진쑥 영지균사발효 추출물의 RAW 264.7 세포의 NO 생성 억제활성을 통한 항염활성 평가에 앞서 세포 생존율을 평가한 결과, 흥미롭게도 인진쑥 추출물은 $150{\mu}g/mL$의 농도부터 RAW 264.7 세포에 대한 생존율을 유의적으로 크게 감소시켰으나, 영지 균사 발효 시 세포 생존율이 크게 증가하는 것이 확인되었다. 영지 균사 발효 시 인진쑥의 독성이 크게 감소하는 것이 확인되었다. 또한 인진쑥 추출물 $25{\mu}g/mL$의 처리는 동일 농도의 인진쑥 영지버섯 균사발효 추출보다 오히려 유의적인 수준에서 RAW 264.7 세포의 NO생성을 억제하는 것이 확인되었다. 그러나 인진쑥 영지버섯 균사발효는 인진쑥 추출물 자체의 RAW 264.7 세포에 대한 독성을 저감하는 효과가 있어 이로 인해 더욱 높은 농도의 영지버섯 균사발효 추출물 처리를 가능할 것으로 사료된다. 영지 균사 발효에 의한 미백 기능성 소재 발굴이라는 본 연구의 취지에 부합하는 결과가 인진쑥 영지균사발효 추출물 처리구에서 확인되었으며, $200{\mu}g/mL$ 농도에서는 양성 대조군인 arbutin 보다 약 3.66배의 활성을 보였다. 이러한 결과는 향후 인진쑥 영지균사발효 추출물이 tyrosinase활성을 억제하는 기능성 소재로서의 활용가능성이 크다는 것을 의미하는 것이다.

Keywords

BSHGBD_2018_v16n4_318_f0001.png 이미지

Fig. 1. DPPH radical scavenging activity assay. Y2, Ganoderma lucidum (ASI7071) 70% EtOH extract. ACE, Artemisia capillaris 70% EtOH extract. Y2 + ACE, Ganoderma lucidum fermented Artemisia capillaris 70% EtOH extract. Statistical significance of differences was evaluated using a one-way analysis of variance (ANOVA) followed by Tukey’s test. *** p < 0.001 versus ascorbic acid (30mM) treated control.

BSHGBD_2018_v16n4_318_f0002.png 이미지

Fig. 2. Effects of extracts on Raw 264.7 cell viability. LPS induced Raw 264.7 cells were treated with various concentration of samples (25, 50, 75 100, 150 and 200 μg/mL). Y2, Ganoderma lucidum (ASI-7071) 70% EtOH extract. ACE, Artemisia capillaris 70% EtOH extract. Y2 + ACE, Ganoderma lucidum fermented Artemisia capillaris 70% EtOH extract. Control, non-treated sample. Statistical significance of differences was evaluated using a one-way analysis of variance (ANOVA) followed by Tukey’s test. *** p < 0.001 versus non-treated control.

BSHGBD_2018_v16n4_318_f0003.png 이미지

Fig. 3. Effects of extracts on nitric oxide production of Raw 264.7 cells. LPS induced Raw 264.7 cells were treated with various concentration of samples (25, 50, 75 100, 150 and 200 μg/mL). Y2, Ganoderma lucidum (ASI-7071) 70% EtOH extract. ACE, Artemisia capillaris 70% EtOH extract. Y2 + ACE, Ganoderma lucidum fermented Artemisia capillaris 70% EtOH extract. Control, non-treated control sample. LPS, lipopolysaccharide treated control sample. Quercetin (15μM). Statistical significance of differences was evaluated using a one-way analysis of variance (ANOVA) followed by Tukey’s test. *** p < 0.001 versus LPS treated control.

BSHGBD_2018_v16n4_318_f0004.png 이미지

Fig. 4. Tyrosinase inhibitory activities of extracts. Y2, Ganoderma lucidum (ASI-7071) 70% EtOH extract. ACE, Artemisia capillaris 70% EtOH extract. Y2 + ACE, Ganoderma lucidum fermented Artemisia capillaris 70% EtOH extract. Control, arbutin (0.5 mM) treated control sample. Statistical significance of differences was evaluated using a one-way analysis of variance (ANOVA) followed by Tukey’s test. *** p < 0.001 versus ACE (200 μg/mL) treated sample.

Table 1. DPPH radical scavenging activity. \

BSHGBD_2018_v16n4_318_t0001.png 이미지

References

  1. Brenner M, Hearing VJ. 2008. The protective role of melanin against UV damage in human skin, Photochem Photobiol. 84: 539-549. https://doi.org/10.1111/j.1751-1097.2007.00226.x
  2. Brusotti G, Cesari I, Dentamaro A, Caccialanza G, Massolini G. 2014. Isolation and characterization of bioactive compounds from plant resources: the role of analysis in the ethnopharmacological approach. J Pharmaceut Biomed 87: 218-228. https://doi.org/10.1016/j.jpba.2013.03.007
  3. Chen JH, Jiang RL. 1980. A pharmacological study of the Chinese drug lingzhi (ganoderma). Acta Pharm Sin B. 15: 234-244.
  4. Chih-Chiang Y. 2007. Supercritical fluids extraction of capillaris in from Artemisia capillaris and its inhibition of in vitro growth of hepatoma cells., J Supercritical Fluids. 42: 96-103. https://doi.org/10.1016/j.supflu.2006.12.022
  5. Chung WS, Wang JH, Bose S, Park JM, Park SO, Lee SJ, Jeon S, Kim H. 2015. Hepatoprotective effect of Lentinus edodes mycelia fermented formulation against alcoholic liver injury in rats. J Food Biochem. 39: 251-262. https://doi.org/10.1111/jfbc.12124
  6. Furusawa E, Chou SC, Furusawa S, Hirazumi A, Dang Y. 1992. Antitumour activity of Ganoderma lucidum, an edible mushroom, on intraperitoneally implanted lewis lung carcinoma in synergenic mice. Phytother Res. 6: 300-304. https://doi.org/10.1002/ptr.2650060604
  7. Jeong SJ, Lee JH, Song HN, Seong NS, Lee SE, Baeg NI. 2004. Natural Products, Organic Chemistry ; Screening for Antioxidant Activity of Plant Medicinal Extracts. J Korean Soc Appl Biol Chem. 47: 135-140.
  8. Kim HT. 2007. Cytotoxic effect of Artemisia capillaris extracts on the cancer cells on in vitro. J Vet Clin. 24: 367-371.
  9. Kim JW, Kim HI, Kim JH, Kwon O, Son ES, Lee CS, Park YJ. 2016. Effects of ganodermanondiol, a new melanogenesis inhibitor from the medicinal mushroom Ganoderma lucidum. Int J Mol Sci. 17: 1798. https://doi.org/10.3390/ijms17111798
  10. Medzhitov R. 2008. Origin and physiological roles of inflammation. Nature. 454: 428-435 (2008). https://doi.org/10.1038/nature07201
  11. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  12. Rim YS, Park YM. 2000. Screening of Antioxidants and antimicrobial activity in native plants. Korean J Medicinal Crop Sci 8: 342-350.
  13. Shiao MS, Lee KR, Lin JJ, Wang CT. 1994. Phytochemicals for cancer prevention II, p.342. In C.T. Ho(eds), Teas, Spices and Herbs. American Chemical Society, Washington.
  14. Yoo ID. 2005. Development of new natural antioxidants for cosmeceuticals., J Soc Cosmet scientists Korea. 31: 349-357.
  15. You JC. 2016. The effect of roots exract from Potentilla chinensis as cosmeceutical material. J Appl Biol Chem. 59: 13-17. https://doi.org/10.3839/jabc.2016.004
  16. Wei CC, Yu CW, Yen PL, Lin HY, Chang ST Hsu FL, Liao VH. 2014. Antioxidant activity, delayed aging, and reduced amyloid-${\beta}$ toxicity of methanol extracts of tea seed pomace from Camellia tenuifolia, J Agric Food Chem. 62: 10701-10707. https://doi.org/10.1021/jf503192x