DOI QR코드

DOI QR Code

The radioligands with VEGF121 for angiogenesis of tumor

  • Yim, Min Su (Division Protein structure research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute, University of Science and Technology) ;
  • Ryu, Eun Kyoung (Division Protein structure research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute, University of Science and Technology)
  • Received : 2018.12.10
  • Accepted : 2018.12.20
  • Published : 2018.12.30

Abstract

Angiogenesis is the new blood vessel formation process and has known to a fundamental event of tumor growth and metastasis. Especially, vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) are the crucial regulators of angiogenesis in tumor. VEGF-A is one of the VEGF family and binds to endothelial cell specific VEGFR1 and VEGFR2, which are associated with tumor growth and tumor angiogenesis. $VEGF_{121}$ is more tumorigenic isomer of VEGF-A. Targeted VEGF or VEGFR molecular imaging has been widely used to enable diagnosis and monitoring of proliferation and development of angiogenic tumors. Therefore, in this review, we have focused on the radioligands with $VEGF_{121}$ for angiogenesis of tumor.

Keywords

Table 1. VEGF121기반 방사성리간드

DHBSB1_2018_v4n2_106_t0001.png 이미지

References

  1. Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature 2005;438(7070):967-974. https://doi.org/10.1038/nature04483
  2. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100(1):57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
  3. Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004;3(5):391-400. https://doi.org/10.1038/nrd1381
  4. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9(6):669-676. https://doi.org/10.1038/nm0603-669
  5. Keyt BA, Berleau LT, Nguyen HV, Chen H, Heinsohn H, Vandlen R, Ferrara N. The carboxyl-terminal domain (111-165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem 1996;271(13):7788-7795. https://doi.org/10.1074/jbc.271.13.7788
  6. Ma SH, Le HB, Jia BH, Wang ZX, Xiao ZW, Cheng XL, Mei W, Wu M, Hu ZG, Li YG. Peripheral pulmonary nodules: relationship between multi-slice spiral CT perfusion imaging and tumor angiogenesis and VEGF expression. BMC Cancer 2008;8:186. https://doi.org/10.1186/1471-2407-8-186
  7. Wang H, Cai W, Chen K, Li ZB, Kashefi A, He L, Chen X. A new PET tracer specific for vascular endothelial growth factor receptor 2. Eur J Nucl Med Mol Imaging 2007;34(12):2001-2010. https://doi.org/10.1007/s00259-007-0524-0
  8. Zhang HT, Scott PA, Morbidelli L, Peak S, Moore J, Turley H, Harris AL, Ziche M, Bicknell R. The 121 amino acid isoform of vascular endothelial growth factor is more strongly tumorigenic than other splice variants in vivo. Br J Cancer 2000;83(1):63-68. https://doi.org/10.1054/bjoc.2000.1279
  9. Roskoski R, Jr. Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 2007;62(3):179-213. https://doi.org/10.1016/j.critrevonc.2007.01.006
  10. Sato Y, Kanno S, Oda N, Abe M, Ito M, Shitara K, Shibuya M. Properties of two VEGF receptors, Flt-1 and KDR, in signal transduction. Ann N Y Acad Sci 2000;902:201-205; discussion 205-207.
  11. Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 1995;55(18):3964-3968.
  12. Underiner TL, Ruggeri B, Gingrich DE. Development of vascular endothelial growth factor receptor (VEGFR) kinase inhibitors as anti-angiogenic agents in cancer therapy. Curr Med Chem 2004;11(6):731-745. https://doi.org/10.2174/0929867043455756
  13. Decaussin M, Sartelet H, Robert C, Moro D, Claraz C, Brambilla C, Brambilla E. Expression of vascular endothelial growth factor (VEGF) and its two receptors (VEGF-R1-Flt1 and VEGF-R2-Flk1/KDR) in non-small cell lung carcinomas (NSCLCs): correlation with angiogenesis and survival. J Pathol 1999;188(4):369-377. https://doi.org/10.1002/(SICI)1096-9896(199908)188:4<369::AID-PATH381>3.0.CO;2-X
  14. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004;25(4):581-611. https://doi.org/10.1210/er.2003-0027
  15. Backer MV, Levashova Z, Patel V, Jehning BT, Claffey K, Blankenberg FG, Backer JM. Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med 2007;13(4):504-509. https://doi.org/10.1038/nm1522
  16. Blankenberg FG, Backer MV, Levashova Z, Patel V, Backer JM. In vivo tumor angiogenesis imaging with site-specific labeled $^{99m}Tc$-HYNIC-VEGF. Eur J Nucl Med Mol Imaging 2006;33(7):841-848. https://doi.org/10.1007/s00259-006-0099-1
  17. Chan C, Sandhu J, Guha A, Scollard DA, Wang J, Chen P, Bai K, Lee L, Reilly RM. A human transferrin-vascular endothelial growth factor (hnTf-VEGF) fusion protein containing an integrated binding site for $^{111}In$ for imaging tumor angiogenesis. J Nucl Med 2005;46(10):1745-1752.
  18. Li S, Peck-Radosavljevic M, Kienast O, Preitfellner J, Havlik E, Schima W, Traub-Weidinger T, Graf S, Beheshti M, Schmid M, Angelberger P, Dudczak R. Iodine-123-vascular endothelial growth factor-165 ($^{123}I$-VEGF165). Biodistribution, safety and radiation dosimetry in patients with pancreatic carcinoma. Q J Nucl Med Mol Imaging 2004;48(3):198-206.
  19. Eder M, Krivoshein AV, Backer M, Backer JM, Haberkorn U, Eisenhut M. ScVEGF-PEG-HBED-CC and scVEGF-PEG-NOTA conjugates: comparison of easy-to-label recombinant proteins for [$^{68}Ga$]PET imaging of VEGF receptors in angiogenic vasculature. Nucl Med Biol 2010;37(4):405-412. https://doi.org/10.1016/j.nucmedbio.2010.02.001
  20. Hsu AR, Cai W, Veeravagu A, Mohamedali KA, Chen K, Kim S, Vogel H, Hou LC, Tse V, Rosenblum MG, Chen X. Multimodality molecular imaging of glioblastoma growth inhibition with vasculature-targeting fusion toxin VEGF121/rGel. J Nucl Med 2007;48(3):445-454.
  21. Wang H, Gao H, Guo N, Niu G, Ma Y, Kiesewetter DO, Chen X. Site-Specific Labeling of scVEGF with Fluorine-18 for Positron Emission Tomography Imaging. Theranostics 2012;2(6):607-617. https://doi.org/10.7150/thno.4611
  22. Wang H, Chen K, Niu G, Chen X. Site-specifically biotinylated VEGF121 for near-infrared fluorescence imaging of tumor angiogenesis. Mol Pharm 2009;6(1):285-294. https://doi.org/10.1021/mp800185h
  23. De Leon-Rodriguez LM, Lubag A, Udugamasooriya DG, Proneth B, Brekken RA, Sun X, Kodadek T, Dean Sherry A. MRI detection of VEGFR2 in vivo using a low molecular weight peptoid-(Gd)8-dendron for targeting. J Am Chem Soc 2010;132(37):12829-12831. https://doi.org/10.1021/ja105563a
  24. Korpanty G, Carbon JG, Grayburn PA, Fleming JB, Brekken RA. Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 2007;13(1):323-330. https://doi.org/10.1158/1078-0432.CCR-06-1313
  25. Willmann JK, Paulmurugan R, Chen K, Gheysens O, Rodriguez-Porcel M, Lutz AM, Chen IY, Chen X, Gambhir SS. US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. Radiology 2008;246(2):508-518. https://doi.org/10.1148/radiol.2462070536
  26. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 2006;7(5):359-371. https://doi.org/10.1038/nrm1911
  27. Black PM. Brain tumors. Part 2. N Engl J Med 1991;324(22):1555-1564. https://doi.org/10.1056/NEJM199105303242205
  28. Fischer I, Gagner JP, Law M, Newcomb EW, Zagzag D. Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol 2005;15(4):297-310.
  29. Senger DR, Van de Water L, Brown LF, Nagy JA, Yeo KT, Yeo TK, Berse B, Jackman RW, Dvorak AM, Dvorak HF. Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev 1993;12(3-4):303-324. https://doi.org/10.1007/BF00665960
  30. Brekken RA, Overholser JP, Stastny VA, Waltenberger J, Minna JD, Thorpe PE. Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer Res 2000;60(18):5117-5124.
  31. Veenendaal LM, Jin H, Ran S, Cheung L, Navone N, Marks JW, Waltenberger J, Thorpe P, Rosenblum MG. In vitro and in vivo studies of a $VEGF_{121}$/rGelonin chimeric fusion toxin targeting the neovasculature of solid tumors. Proc Natl Acad Sci U S A 2002;99(12):7866-7871. https://doi.org/10.1073/pnas.122157899
  32. Akiyama H, Mohamedali KA, RL ES, Kachi S, Shen J, Hatara C, Umeda N, Hackett SF, Aslam S, Krause M, Lai H, Rosenblum MG, Campochiaro PA. Vascular targeting of ocular neovascularization with a vascular endothelial growth $factor_{121}$/gelonin chimeric protein. Mol Pharmacol 2005;68(6):1543-1550. https://doi.org/10.1124/mol.105.015628
  33. Ran S, Mohamedali KA, Luster TA, Thorpe PE, Rosenblum MG. The vascular-ablative agent $VEGF_{121}$/rGel inhibits pulmonary metastases of MDA-MB-231 breast tumors. Neoplasia 2005;7(5):486-496. https://doi.org/10.1593/neo.04631
  34. Lee I, Yoon KY, Kang CM, Lin X, Chen X, Kim JY, Kim SM, Ryu EK, Choe YS. Evaluation of the angiogenesis inhibitor KR-31831 in SKOV-3 tumor-bearing mice using $^{64}Cu$-DOTA-$VEGF_{121}$ and microPET. Nucl Med Biol 2012;39(6):840-846. https://doi.org/10.1016/j.nucmedbio.2012.01.007
  35. Yi EY, Park SY, Song HS, Son MJ, Yi KY, Yoo SE, Kim YJ. KR-31831, a new synthetic anti-ischemic agent, inhibits in vivo and in vitro angiogenesis. Exp Mol Med 2006;38(5):502-508. https://doi.org/10.1038/emm.2006.59
  36. Park SY, Seo EH, Song HS, Jung SY, Lee YK, Yi KY, Yoo SE, Kim YJ. KR-31831, benzopyran derivative, inhibits VEGF-induced angiogenesis of HUVECs through suppressing KDR expression. Int J Oncol 2008;32(6):1311-1315. https://doi.org/10.3892/ijo_32_6_1311
  37. Cai W, Chen K, Mohamedali KA, Cao Q, Gambhir SS, Rosenblum MG, Chen X. PET of vascular endothelial growth factor receptor expression. J Nucl Med 2006;47(12):2048-2056.
  38. Boocock CA, Charnock-Jones DS, Sharkey AM, McLaren J, Barker PJ, Wright KA, Twentyman PR, Smith SK. Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J Natl Cancer Inst 1995;87(7):506-516. https://doi.org/10.1093/jnci/87.7.506
  39. Sher I, Adham SA, Petrik J, Coomber BL. Autocrine VEGF-A/KDR loop protects epithelial ovarian carcinoma cells from anoikis. Int J Cancer 2009;124(3):553-561. https://doi.org/10.1002/ijc.23963
  40. Wang FQ, Barfield E, Dutta S, Pua T, Fishman DA. VEGFR-2 silencing by small interference RNA (siRNA) suppresses LPA-induced epithelial ovarian cancer (EOC) invasion. Gynecol Oncol 2009;115(3):414-423. https://doi.org/10.1016/j.ygyno.2009.08.019
  41. Cai W, Chen X. Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Front Biosci 2007;12:4267-4279. https://doi.org/10.2741/2386
  42. Cai W, Chen X. Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 2008;49 Suppl 2:113S-128S. https://doi.org/10.2967/jnumed.107.045922
  43. Cherry SR. Multimodality in vivo imaging systems: twice the power or double the trouble? Annu Rev Biomed Eng 2006;8:35-62. https://doi.org/10.1146/annurev.bioeng.8.061505.095728
  44. Louie A. Multimodality imaging probes: design and challenges. Chem Rev 2010;110(5):3146-3195. https://doi.org/10.1021/cr9003538
  45. de Barros AB, Tsourkas A, Saboury B, Cardoso VN, Alavi A. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res 2012;2(1):39. https://doi.org/10.1186/2191-219X-2-39
  46. Minchin RF, Martin DJ. Nanoparticles for molecular imaging-an overview. Endocrinology 2010;151(2):474-481. https://doi.org/10.1210/en.2009-1012
  47. Kang CM, Koo HJ, Lee KC, Choe YS, Choi JY, Lee KH, Kim BT. A vascular endothelial growth factor 121 (VEGF121)-based dual PET/optical probe for in vivo imaging of VEGF receptor expression. Biomaterials 2013;34(28):6839-6845. https://doi.org/10.1016/j.biomaterials.2013.05.051
  48. Green NM. Avidin. Adv Protein Chem 1975;29:85-133.
  49. Jung KH, Park JW, Paik JY, Quach CH, Choe YS, Lee KH. EGF receptor targeted tumor imaging with biotin-PEG-EGF linked to $^{99m}Tc$-HYNIC labeled avidin and streptavidin. Nucl Med Biol 2012;39(8):1122-1127. https://doi.org/10.1016/j.nucmedbio.2012.06.007
  50. Rosebrough SF. Pharmacokinetics and biodistribution of radiolabeled avidin, streptavidin and biotin. Nucl Med Biol 1993;20(5):663-668. https://doi.org/10.1016/0969-8051(93)90037-U
  51. Jung KH, Choe YS, Paik JY, Lee KH. 99mTc-Hydrazinonicotinamide epidermal growth factor-polyethylene glycol-quantum dot imaging allows quantification of breast cancer epidermal growth factor receptor expression and monitors receptor downregulation in response to cetuximab therapy. J Nucl Med 2011;52(9):1457-1464. https://doi.org/10.2967/jnumed.111.087619
  52. Deen DF, Chiarodo A, Grimm EA, Fike JR, Israel MA, Kun LE, Levin VA, Marton LJ, Packer RJ, Pegg AE, et al. Brain Tumor Working Group Report on the 9th International Conference on Brain Tumor Research and Therapy. Organ System Program, National Cancer Institute. J Neurooncol 1993;16(3):243-272. https://doi.org/10.1007/BF01057041
  53. Cai W, Guzman R, Hsu AR, Wang H, Chen K, Sun G, Gera A, Choi R, Bliss T, He L, Li ZB, Maag AL, Hori N, Zhao H, Moseley M, Steinberg GK, Chen X. Positron emission tomography imaging of poststroke angiogenesis. Stroke 2009;40(1):270-277. https://doi.org/10.1161/STROKEAHA.108.517474
  54. Kang CM, Kim SM, Koo HJ, Yim MS, Lee KH, Ryu EK, Choe YS. In vivo characterization of $^{68}Ga$-NOTA-VEGF121 for the imaging of VEGF receptor expression in U87MG tumor xenograft models. Eur J Nucl Med Mol Imaging 2013;40(2):198-206. https://doi.org/10.1007/s00259-012-2266-x
  55. Rodriguez-Porcel M, Cai W, Gheysens O, Willmann JK, Chen K, Wang H, Chen IY, He L, Wu JC, Li ZB, Mohamedali KA, Kim S, Rosenblum MG, Chen X, Gambhir SS. Imaging of VEGF receptor in a rat myocardial infarction model using PET. J Nucl Med 2008;49(4):667-673. https://doi.org/10.2967/jnumed.107.040576
  56. Willmann JK, Chen K, Wang H, Paulmurugan R, Rollins M, Cai W, Wang DS, Chen IY, Gheysens O, Rodriguez-Porcel M, Chen X, Gambhir SS. Monitoring of the biological response to murine hindlimb ischemia with $^{64}Cu$-labeled vascular endothelial growth factor-121 positron emission tomography. Circulation 2008;117(7):915-922. https://doi.org/10.1161/CIRCULATIONAHA.107.733220
  57. Yoshimoto M, Kinuya S, Kawashima A, Nishii R, Yokoyama K, Kawai K. Radioiodinated VEGF to image tumor angiogenesis in a LS180 tumor xenograft model. Nucl Med Biol 2006;33(8):963-969. https://doi.org/10.1016/j.nucmedbio.2006.08.006
  58. Jung KH, Park JW, Paik JY, Lee EJ, Choe YS, Lee KH. Hydrazinonicotinamide prolongs quantum dot circulation and reduces reticuloendothelial system clearance by suppressing opsonization and phagocyte engulfment. Nanotechnology 2012;23(49):495102. https://doi.org/10.1088/0957-4484/23/49/495102
  59. Liang M, Liu X, Cheng D, Liu G, Dou S, Wang Y, Rusckowski M, Hnatowich DJ. Multimodality nuclear and fluorescence tumor imaging in mice using a streptavidin nanoparticle. Bioconjug Chem 2010;21(7):1385-1388. https://doi.org/10.1021/bc100081h