DOI QR코드

DOI QR Code

Analysis of Flat-Band-Voltage Dependent Breakdown Voltage for 10 nm Double Gate MOSFET

  • Jung, Hakkee (Department of Electronic Engineering, Kunsan National University) ;
  • Dimitrijev, Sima (Griffith School of Engineering, Griffith University)
  • Received : 2017.09.22
  • Accepted : 2017.10.25
  • Published : 2018.03.31

Abstract

The existing modeling of avalanche dominated breakdown in double gate MOSFETs (DGMOSFETs) is not relevant for 10 nm gate lengths, because the avalanche mechanism does not occur when the channel length approaches the carrier scattering length. This paper focuses on the punch through mechanism to analyze the breakdown characteristics in 10 nm DGMOSFETs. The analysis is based on an analytical model for the thermionic-emission and tunneling currents, which is based on two-dimensional distributions of the electric potential, obtained from the Poisson equation, and the Wentzel-Kramers-Brillouin (WKB) approximation for the tunneling probability. The analysis shows that corresponding flat-band-voltage for fixed threshold voltage has a significant impact on the breakdown voltage. To investigate ambiguousness of number of dopants in channel, we compared breakdown voltages of high doping and undoped DGMOSFET and show undoped DGMOSFET is more realistic due to simple flat-band-voltage shift. Given that the flat-band-voltage is a process dependent parameter, the new model can be used to quantify the impact of process-parameter fluctuations on the breakdown voltage.

Keywords

E1ICAW_2018_v16n1_43_f0001.png 이미지

Fig. 1. Schematic diagram of a double gate MOSFET with potential energy

E1ICAW_2018_v16n1_43_f0002.png 이미지

Fig. 2. Potential energy distribution along the y-axis for the increasing flat-

E1ICAW_2018_v16n1_43_f0003.png 이미지

Fig. 3. (a) Drain current?voltage characteristics and (b) contributions of

E1ICAW_2018_v16n1_43_f0004.png 이미지

Fig. 4. Breakdown voltages for the intrinsic-body and doped-body

E1ICAW_2018_v16n1_43_f0005.png 이미지

Fig. 5. Breakdown voltages for different silicon thicknesses of undoped

Table 1. Possible silicon thickness to oxide thickness for breakdownvoltage above 1.5 V

E1ICAW_2018_v16n1_43_t0001.png 이미지

References

  1. M. Chanda, S. De, and C. K. Sarkar, "Modeling of characteristic parameters for nano-scale junctionless double gate MOSFET considering quantum mechanical effect," Journal of Computational Electronics, vol. 14, no. 1, pp. 262-269, 2015. DOI: 10.1007/s10825-014-0648-y.
  2. J. Verma, S. Haldar, R. S. Gupta, and M. Gupta, "Modeling and simulation of subthreshold behavior of cylindrical surrounding double gate MOSFET for enhanced electrostatic integrity," Superlattices and Microstructures, vol. 88, pp. 354-364, 2015. DOI: 10.1016/j.spmi.2015.09.024.
  3. M. Schwarz, T. Holtij, A. Kloes, and B. Iniguez, "Performance study of a Schottky barrier double-gate MOSFET using a two-dimensional analytical model," IEEE Transactions on Electron Devices, vol. 60, no. 2, pp. 884-886, 2013. DOI: 10.1109/TED.2012.2235146.
  4. T. Toyabe and S. Asai, "Analytical models of threshold voltage and breakdown voltage of short-channel MOSFETs derived from twodimensional analysis," IEEE Transactions on Electron Devices, vol. 26, no. 4, pp. 453-461, 1979. DOI: 10.1109/T-ED.1979.19448.
  5. H. Mohammad, H. Abdullah, C. F. Dee, P. S. Menon, and B. Y. Majlis, "A new analytical model for lateral breakdown voltage of double-gate power MOSFETs," in Proceedings of the 2011 IEEE Regional Symposium on Micro and Nanoelectronics, Kota Kinabalu, Malaysia, pp. 92-95, 2011. DOI: 10.1109/RSM.2011.6088299.
  6. W. Fulop, "Calculation of avalanche breakdown voltages of silicon pn junctions," Solid-States Electronics, vol. 10, no. 1, pp. 39-43, 1967. DOI: 10.1016/0038-1101(67)90111-6.
  7. C. W. Lee, A. Afzalian., R. Yan, N. D. Akhavan, W. Xiong and J. P. Colinge, "Drain breakdown voltage in MuGFETs: influence of physical parameters," IEEE Transactions on Electron Devices, vol. 55, no. 12, pp. 3503-3506, 2008. DOI: 10.1109/TED.2008.2006546.
  8. S. Dimitrijev, Principles of Semiconductor Devices, 2nd ed. New York, NY: Oxford University Press, 2012.
  9. Y. H. Shin and I. Yun, "Analytical model for an asymmetric doublegate MOSFET with gate-oxide thickness and flat-band voltage variations in the subthreshold region," Solid-State Electronics, vol. 120, pp. 19-24, 2016. DOI: 10.1016/j.sse.2016.03.002.
  10. Z. Ding, G. Hu, J. Gu, R. Liu, T. Wang, and T. Tang, "An analytical model for channel potential and subthreshold swing of the symmetric and asymmetric double-gate MOSFETs," Microelectronics Journal, vol. 42, no. 3, pp. 515-519, 2011. DOI: 10.1016/j.mejo.2010.11.002.
  11. H. K. Jung and S. Dimitrijev, "Optimum top and bottom oxide thicknesses and flat-band voltages for improving subthreshold characteristics of 5 nm DGMOSFET," Superlattices and Microstructure, vol. 101, pp. 286-292, 2017. DOI: 10.1016/j.spmi.2016.11.040.
  12. S. Dubey, P. K. Tiwari, and S. Jit, "A two-dimensional model for the subthreshold swing of short-channel double-gate metal-oxidesemiconductor field effect transistors with a vertical Gaussian-like doping profile," Journal of Applied Physics, vol. 109, no. 5, article no. 054508, 2011. DOI: 10.1063/1.3552309.
  13. H. K. Jung and S. Dimitrijev, "Analysis of subthreshold carrier transport for ultimate DGMOSFET," IEEE Transactions on Electron Devices, vol. 53, no. 4, pp. 685-691, 2006. DOI: 10.1109/TED.2006.870282.
  14. A. Ortiz-Conde, F. J. Garcia Sanchez, J. J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, "A review of recent MOSFET threshold voltage extraction methods," Microelectronics Reliability, vol. 42, no. 4-5, pp. 583-596, 2002. DOI: 10.1016/S0026-2714(02)00027-6.

Cited by

  1. Compact Model for L-Shaped Tunnel Field-Effect Transistor Including the 2D Region vol.9, pp.18, 2019, https://doi.org/10.3390/app9183716
  2. Compact Trap-Assisted-Tunneling Model for Line Tunneling Field-Effect-Transistor Devices vol.10, pp.13, 2018, https://doi.org/10.3390/app10134475