Fig. 1. The neural network: (a) biological neuron and (b) its computational
Fig. 2. Structure of an ANN.
Fig. 3. Simulation setup for the ANN compensator in the RoF system.
Fig. 4. Signal constellation (a) without and (b) with the ANN compensator.
Table 1. EVM results according to number of hidden layer neural units
Table 2. System EVM with and without the ANN compensator
참고문헌
- T. Matsumoto, M. Koga, K. Noguchi, and S. Aizawa, "Proposal for neural-network applications to fiber-optic transmission," in Proceedings of the International Joint Conference on Neural Networks, San Diego, CA, pp. 75-80, 1990. DOI: 10.1109/IJCNN.1990.137549.
- T. F. B. de Sousa and M. A. C. Fernandes, "Multilayer perceptron equalizer for optical communication systems," in Proceedings of the 2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference, Rio de Janeiro, Brazil, pp. 1-5, 2013. DOI: 10.1109/IMOC.2013.6646479.
- R. Abdolee, R. Ngah, V. Vakilian, and T. A. Rahman, "Application of radio-over-fiber (ROF) in mobile communication," in Proceedings of the Asia-Pacific Conference on Applied Electromagnetics, Melaka, Malaysia, pp. 1-5, 2007. DOI: 10.1109/APACE.2007.4603945.
- M. Xu, F. Lu, J. Wang, L. Cheng, D. Guidotti, and G. K. Chang, "Key technologies for next-generation digital RoF mobile front-haul with statistical data compression and multiband modulation," Journal of Lightwave Technology, vol. 35, no. 17, pp. 3671-3679, 2017. DOI: 10.1109/jlt.2017.2715003.
- S. M. Kim, "Limits of digital unit-remote radio unit distance and cell coverage induced by time division duplex profile in mobile WiMAX systems," International Journal of Communication Systems, vol. 26, no. 2, pp. 250-258, 2013. DOI: 10.1002/dac.1356.
- S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. S. Lee, & J. H. Lee, "Cost-effective next generation mobile fronthaul architecture with multi-IF carrier transmission scheme," in Proceedings of the Optical Fiber Communications Conference and Exhibition, San Francisco, CA, 2014. DOI: 10.1364/OFC.2014.Tu2B.6.
- S. M. Kim, "Nonlinearity detection and compensation in radio over fiber systems using a monitoring channel," Journal of Information and Communication Convergence Engineering, vol. 13, no. 3, pp. 167-171, 2015. DOI: 10.6109/jicce.2015.13.3.167.
- A. C. Najarro and S. M. Kim, "Predistortion for frequency-dependent nonlinearity of a laser in RoF systems," Journal of Information and Communication Convergence Engineering, vol. 14, no. 3, pp. 147-152, 2016. DOI: 10.6109/jicce.2016.14.3.147.
- D. H. Nguyen and B. Widrow, "Neural networks for self-learning control systems," IEEE Control Systems Magazine, vol. 10, no. 3, pp. 18-23, 1990. DOI: 10.1109/37.55119.
- J. Gill, B. Singh, and S. Singh, "Training backpropagation neural networks with genetic algorithm for weather forecasting," in Proceedings of the 8th International Symposium on Intelligent Systems and Informatics, Subotica, Serbia, pp. 465-469, 2010. DOI: 10.1109/SISY.2010.5647319.
- C. Ozkan and F. Sunar, "The comparison of activation functions for multispectral Landsat TM image classification," Photogrammetric Engineering & Remote Sensing, vol. 69, no. 11, pp. 1225-1234, 2003. DOI: 10.14358/PERS.69.11.1225.
- Caltech, "Machine learning (JC_lecture 10 sides)," [Internet], Available: https://itunes.apple.com/us/course/machine-learning/id515364596.
- A. Reynaldi, S. Lukas, and H. Margaretha, "Backpropagation and Levenberg-Marquardt algorithm for training finite element neural network," in Proceedings of the 6th UKSim/AMSS European Symposium on Computer Modeling and Simulation, Valetta, Malta, pp. 89-94, 2012. DOI: 10.1109/EMS.2012.56.
피인용 문헌
- Earthquake Ground Motion Matching on a Small Electric Shaking Table Using a Combined NN-PDFF Controller vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/7260590