Fig. 1. The principle of central magnet float, the aircurrent from the central hole provides the stability ofdirection of axis.
Fig. 2. Hand-operated coil, 0.03mm copper 6100 times.
Fig. 3. A magnet inside and set OPAMP (AD623) forthe differential amplification.
Fig. 4. Connection diagram of the differentialamplification.
Fig. 5. Development a physical simulator for flap ofbirds.
Fig.6. Generated voltage with flapping 480.
Fig. 7. The result of the FFT of Fig. 6.
Fig. 8. Relationship generated voltage and flapping.
Fig. 9. Relationship between generated power and loadresistance(R).
Fig. 10. Coil on flying Japanese Pheasants at SeisaUniversity Oiso campus.
Fig. 11. Generated electrostatic potential full span.
Table 1. Specifications of the magnet, use as a columnar magnet connected tandemly four (column of total 8mm in length).
References
- I. Nakajima, L. Androuchko, H. Juzoji, Y. Tomioka, T. Kitano,"ICT for the prevention of Avian Influenza", IEEE Healthcom 2009, Sydney, Australia, pp:124-129, Dec.2009.
- N. Chaimanonart, R. Olszens, M. Zimmerman,"Implantable RF Power Converter for Small Animal In Vivo Biological Monitoring", 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005. 5194 - 5197. Sep. 2005.
- A. Haeberlin, A. Zurbuchen, S. Walpen, J. Schaerer, T. Niederhauser, C. Huber, H. Tanner, H. Servatius, J. Seiler, H. Haeberlin, J. Fuhrer, R. Vogel,"The first batteryless,solar powered cardiac pacemaker",Heart Rhythm, Vol. 12, No. 6, pp1317-1323, June 2015. https://doi.org/10.1016/j.hrthm.2015.02.032
- B. Coxworth, "Batteryless device powers a pacemaker using heartbeats," Feb. 2018; newatlas.com/wristwatch-pacemaker/33624/
- BrightGuy.com at Flashlight University, "Personl Energy Generator,The nPower PEG Story", Feb.2018;www.flashlightuniversity.com/npower-peg
- Asian Development Bank, "Research and Development of Energy Conversion Technology for Energy Saving at Train Stations and Buildings", Feb. 2018; www.adb.org/sites/default/files/publication/173696/energy-intelligent-railway-station.pdf
- E. Mitcheson, M. Yeatman, G. Rao, "Energy harvesting from human and machine motion for wireless electronic devices", Proceedings of the IEEE 96(9): 1457-1486, 2008. https://doi.org/10.1109/JPROC.2008.927494
- P. Beeby, J. Tudor, N. White, "Energy harvesting vibration sources for microsystems applications", Measurement Science and Technology, vol.17, no.12, pp.175-195, 2006. https://doi.org/10.1088/0957-0233/17/12/R01
- K. Kim, F. Cottone, S. Goyal, J. Punch, "Energy scavenging for energy efficiency in networks and applications", Bell Labs Technical Journal vol.15, no.2, pp.7-29, 2010. https://doi.org/10.1002/bltj.20438
- D. Zhu, J. Tudor, S.Beeby "Strategies for increasing the operating frequency range of vibration energy harvesters: a review", Measurement Science and Technology 21:022001, 2010 https://doi.org/10.1088/0957-0233/21/2/022001