DOI QR코드

DOI QR Code

The Brainwave Analyzer of Server System Applied Security Functions

보안기능을 강화한 뇌파 분석 서버시스템

  • Choi, Sung-Ja (Dept. of Multimeida Engineering, Hannam University) ;
  • Kang, Byeong-Gwon (Dept. of Information and Communication Engineering, Soonchunhyang University) ;
  • Kim, Gui-jung (Division of Information & Communication, Baeseok University)
  • 최성자 (한남대학교 멀티미디어공학과) ;
  • 강병권 (순천향대학교 정보통신공학과) ;
  • 김귀정 (백석대학교 정보통신공학부)
  • Received : 2018.11.13
  • Accepted : 2018.12.20
  • Published : 2018.12.28

Abstract

Electroencephalograph(EEG) information, which is an important data of brain science, reflects various levels of information from the molecular level to the behavior and cognitive stages, and the explosively amplified information is provided at each stage. Therefore, EEG information is an intrinsic privacy area of an individual, which is important information to be protected. In this paper, we apply spring security to web based system of spring MVC (Model, View, Control) framework to build independent and lightweight server system with powerful security system. Through the proposal of the platform type EEG analysis system which enhances the security function, the web service security of the EEG information is enhanced and the privacy of the EEG information can be protected.

뇌파 정보는 분자 단계에서 행동 및 인지 단계에 이르기까지 생성된 정보의 양이 방대하며, 개인의 고유한 프라이버시영역을 나타내는 중요한 정보로 활용되고 있다. 이에, 뇌파정보의 다양한 정보를 통합하고 뇌파정보를 보호할 수 있는 프레임워크를 제시한다. 제안된 시스템은 전자정부 프레임워크 서버 시스템에 보안기능을 강화한 프레임워크로써, 메타데이터를 활용한 의존성 낮은 웹 애플리케이션 서버 시스템이다. 서버 구축을 위해 스프링 플랫폼의 MVC(Model, Vew And Control)프레임워크 웹 기반 환경에 스프링 시큐리티를 적용한다. 본 시스템은 강력한 보안시스템을 탑재한 독립적이고 경량화된 서버시스템으로 분석된 뇌파 정보를 확인할 수 있다. 이로 인해, 뇌파정보의 웹서비스 보안성을 높이고, 뇌파정보의 프라이버시 보호가 가능하다. 또한, 치매환자나 뇌인지 정보가 요구되는 경우 본 연구를 통해 원격의 실시간 확인 및 분석이 가능하다.

Keywords

DJTJBT_2018_v16n12_343_f0001.png 이미지

Fig. 1. Execution process of spring mvc

DJTJBT_2018_v16n12_343_f0002.png 이미지

Fig. 2. Execution process of spring security

DJTJBT_2018_v16n12_343_f0003.png 이미지

Fig. 3. Server platform of brainwave analyzer

DJTJBT_2018_v16n12_343_f0004.png 이미지

Fig. 4. BRAINWAVE ANALYZER V2.0

DJTJBT_2018_v16n12_343_f0005.png 이미지

Fig. 5. Realtime graph of EEG frequency mode

DJTJBT_2018_v16n12_343_f0006.png 이미지

Fig. 6. Analyzer graph of EEG

References

  1. K. Kasemsap. (2018). Brain-Machine Interfaces: Advanced Issues and Approaches. In Handbook of Research on Biomimicry in Information Retrieval and Knowledge Management (pp. 351-371). IGI Global.
  2. Q. C. Lam, L. A. T. Nguyen & H. K. Nguyen. (2017, December). A Novel Approach for Classifying EEG Signal with Multi-Layer Neural Network. In Proceedings of the 2017 International Conference on Robotics and Artificial Intelligence (pp. 79-83). ACM.
  3. A. S. Al-Fahoum & A. A. Al-Fraihat. (2014). Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. ISRN neuroscience, 2014.
  4. Wolpaw, J. R. et al. (2000). Brain-computer interface technology: a review of the first international meeting. IEEE transactions on rehabilitation engineering, 8(2), 164-173. https://doi.org/10.1109/TRE.2000.847807
  5. B. S. Zainuddin, Z. Hussain & I. S. Isa. (2014, March). Alpha and beta EEG brainwave signal classification technique: A conceptual study. In Signal Processing &its Applications (CSPA), 2014 IEEE 10th International Colloquium on (pp. 233-237). IEEE.
  6. A. N. Malik, J. Iqbal & M. I. Tiwana. (2016, November). EEG signals classification and determination of optimal feature-classifier combination for predicting the movement intent of lower limb. In Robotics and Artificial Intelligence (ICRAI), 2016 2nd International Conference on (pp. 45-49). IEEE.
  7. B. Ulker, M. B. Tabakcioglu, H. Cizmeci & D. Ayberkin. (2017, June). Relations of attention and meditation level with learning in engineering education. In Electronics, Computers and Artificial Intelligence (ECAI), 2017 9th International Conference on (pp. 1-4). IEEE.
  8. F. C. Kao, Y. K. Lin, C. C. Chen & C. H. Huang. (2014, June). Brainwaves analysis of relaxation emotion. In Computer, Consumer and Control (IS3C), 2014 International Symposium on (pp. 308-310). IEEE.
  9. F. C. Kao, H. C. Hsieh & W. T. Li. (2011, October). Analysis of brainwave characteristic frequency bands for learning. In 2011 11th IEEE International Conference on Bioinformatics and Bioengineering (pp. 314-317). IEEE.
  10. B. S. Zainuddin, Z. Hussain & I. S. Isa. (2014, March). Alpha and beta EEG brainwave signal classification technique: A conceptual study. In Signal Processing &its Applications (CSPA), 2014 IEEE 10th International Colloquium on (pp. 233-237). IEEE.
  11. S. J. Choi & B. G. Kang. (2014). Prototype design and implementation of an automatic control system based on a BCI. Wireless personal communications, 79(4), 2551-2563. https://doi.org/10.1007/s11277-014-1861-5
  12. MINDWAVE: http://developer.neurosky.com.
  13. MyBatis : http://blog.mybatis.org/
  14. SPRING: https://spring.io
  15. SPRINGSECURITY: https://spring.io/projects/spring-security