Fig. 1. Execution process of spring mvc
Fig. 2. Execution process of spring security
Fig. 3. Server platform of brainwave analyzer
Fig. 4. BRAINWAVE ANALYZER V2.0
Fig. 5. Realtime graph of EEG frequency mode
Fig. 6. Analyzer graph of EEG
References
- K. Kasemsap. (2018). Brain-Machine Interfaces: Advanced Issues and Approaches. In Handbook of Research on Biomimicry in Information Retrieval and Knowledge Management (pp. 351-371). IGI Global.
- Q. C. Lam, L. A. T. Nguyen & H. K. Nguyen. (2017, December). A Novel Approach for Classifying EEG Signal with Multi-Layer Neural Network. In Proceedings of the 2017 International Conference on Robotics and Artificial Intelligence (pp. 79-83). ACM.
- A. S. Al-Fahoum & A. A. Al-Fraihat. (2014). Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. ISRN neuroscience, 2014.
- Wolpaw, J. R. et al. (2000). Brain-computer interface technology: a review of the first international meeting. IEEE transactions on rehabilitation engineering, 8(2), 164-173. https://doi.org/10.1109/TRE.2000.847807
- B. S. Zainuddin, Z. Hussain & I. S. Isa. (2014, March). Alpha and beta EEG brainwave signal classification technique: A conceptual study. In Signal Processing &its Applications (CSPA), 2014 IEEE 10th International Colloquium on (pp. 233-237). IEEE.
- A. N. Malik, J. Iqbal & M. I. Tiwana. (2016, November). EEG signals classification and determination of optimal feature-classifier combination for predicting the movement intent of lower limb. In Robotics and Artificial Intelligence (ICRAI), 2016 2nd International Conference on (pp. 45-49). IEEE.
- B. Ulker, M. B. Tabakcioglu, H. Cizmeci & D. Ayberkin. (2017, June). Relations of attention and meditation level with learning in engineering education. In Electronics, Computers and Artificial Intelligence (ECAI), 2017 9th International Conference on (pp. 1-4). IEEE.
- F. C. Kao, Y. K. Lin, C. C. Chen & C. H. Huang. (2014, June). Brainwaves analysis of relaxation emotion. In Computer, Consumer and Control (IS3C), 2014 International Symposium on (pp. 308-310). IEEE.
- F. C. Kao, H. C. Hsieh & W. T. Li. (2011, October). Analysis of brainwave characteristic frequency bands for learning. In 2011 11th IEEE International Conference on Bioinformatics and Bioengineering (pp. 314-317). IEEE.
- B. S. Zainuddin, Z. Hussain & I. S. Isa. (2014, March). Alpha and beta EEG brainwave signal classification technique: A conceptual study. In Signal Processing &its Applications (CSPA), 2014 IEEE 10th International Colloquium on (pp. 233-237). IEEE.
- S. J. Choi & B. G. Kang. (2014). Prototype design and implementation of an automatic control system based on a BCI. Wireless personal communications, 79(4), 2551-2563. https://doi.org/10.1007/s11277-014-1861-5
- MINDWAVE: http://developer.neurosky.com.
- MyBatis : http://blog.mybatis.org/
- SPRING: https://spring.io
- SPRINGSECURITY: https://spring.io/projects/spring-security