DOI QR코드

DOI QR Code

Studies on Antioxidant, Anti-inflammation and Tyrosinase Inhibitory Activities of Melissa officinalis Extracts and Their Fractions

레몬밤 추출물과 분획물의 항산화, 항염 및 티로시나제 저해활성 연구

  • Jeong, Yong Un (Department of Integrated Biosciences, College of Biomedical and Health Science, Konkuk University) ;
  • Lee, Hwan (Department of Integrated Biosciences, College of Biomedical and Health Science, Konkuk University) ;
  • Park, Haney (Department of Integrated Biosciences, College of Biomedical and Health Science, Konkuk University) ;
  • Kim, Kyungmin (Jeju R&D Center, AMI Cosmetics Co., Ltd.) ;
  • Kim, Suyeong (Jeju R&D Center, AMI Cosmetics Co., Ltd.) ;
  • Park, Young Jin (Department of Integrated Biosciences, College of Biomedical and Health Science, Konkuk University)
  • 정용운 (건국대학교 의료생명대학 바이오융합과학부) ;
  • 이환 (건국대학교 의료생명대학 바이오융합과학부) ;
  • 박하늬 (건국대학교 의료생명대학 바이오융합과학부) ;
  • 김경민 (주식회사 아미코스메틱 제주연구소) ;
  • 김수영 (주식회사 아미코스메틱 제주연구소) ;
  • 박영진 (건국대학교 의료생명대학 바이오융합과학부)
  • Received : 2018.12.03
  • Accepted : 2018.12.26
  • Published : 2018.12.30

Abstract

This study was carried out to evaluate the antioxidant, anti-inflammation, and tyrosinase inhibitory activity of Melissa officinalis extracts and their fractions. The total polyphenol contents of the extracts were 33.02-302.76 mg GAE/g and total flavonoid contents were 9.98-325.07 mg CE/g. In 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, DPPH radical scavenging activity was observed in the extracts and water fractions of M. officinalis and similar to that of ascorbic acid ($30{\mu}M$). In addition, the treatment of chloroform fraction significantly inhibited the production of nitric oxide (NO) in RAW 264.7 cells, indicating that they have anti-inflammatory activity. Tyrosinase inhibitory activity of $200{\mu}g/mL$ of 100% ethanol reflux extract showed better inhibitory activity than arbutin treatment at statistically significant level. As a result, it is considered that M. officinalis can be used as an effective cosmetic ingredient having antioxidant, anti-inflammation, and whitening activity.

본 연구는 레몬밤 추출물 및 용매 분획물의 항산화 활성, 항염활성 및 미백 활성을 평가하기 위해 수행하였다. 레몬밤의 용매별 추출물의 총 폴리페놀 함량은 33.02-302.76 mg GAE/g, 총 플라보노이드 함량은 9.98-325.07 mg CE/g으로 확인되었다. 레몬밤 추출물 및 용매 분획물의 1,1-diphenyl-2-picrylhydrazyl(DPPH) 라디칼소거활성을 평가한 결과 전반적으로 레몬밤 용매별 추출물 및 물 분획물들이 대조구인 ascorbic acid ($30{\mu}M$)와 유사한 DPPH 라디칼소거능이 확인되었다. 또한 레몬밤 추출물 및 용매 분획물 중 클로로폼 분획물이 상대적으로 가장 우수한 RAW 264.7 세포의 NO생성 억제효과가 확인되었다. Tyrosinase 억제 활성은 100% 에탄올 환류 추출물의 $200{\mu}g/mL$ 농도가 통계적으로 유의한 수준에서 arbutin 처리구 보다 우수한 억제 활성을 나타내었다. 이러한 결과들은 레몬밤이 항산화, 항염 및 미백활성을 가지는 효과적인 화장품 소재로 활용 가능하다는 것을 시사한다.

Keywords

HJPHBN_2018_v44n4_465_f0001.png 이미지

Figure 1. DPPH radical scavenging activities of M. officinalis extracts and their fractions. (A) Reflux extraction. (B) Static extraction. Ascorbic acid (30 μM). Con: non-treasted sample.

HJPHBN_2018_v44n4_465_f0002.png 이미지

Figure 2. Effects of M. officinalis extracts and their fractions on RAW 264.7 cell viability. LPS induced RAW 264.7 cells were treated with various concentration of samples (25, 50, 100 and 200 μg/mL). (A) 100% EtOH reflux extraction. (B) 50% EtOH reflux extraction. (C) 50% MeOH reflux extraction. (D) Distilled water reflux extraction. (E) 100% EtOH static extraction. (F) 50% EtOH static extraction. (G) 50% MeOH static extraction. con: non-treated control, LPS: lipopolysaccharide treated control, Que: quercetin (5 μM) treated control.

HJPHBN_2018_v44n4_465_f0003.png 이미지

Figure 3. Effects of M. officinalis extracts and their fractions on nitric oxide production of RAW 264.7 cells. LPS induced RAW 264.7 cells were treated with various concentration of samples (25, 50, 100 and 200 μg/mL). (A) 100% EtOH reflux extraction. (B) 50% EtOH reflux extraction. (C) 50% MeOH reflux extraction. (D) Distilled water reflux extraction. (E) 100% EtOH static extraction. (F) 50% EtOH static extraction. (G) 50% MeOH static extraction. con: non-treated control, LPS: lipopolysaccharide treated control, Que: quercetin (5 μM) treated control. Statistical significance of differences was evaluated using a one-way analysis of variance (ANOVA) followed by Tukey’s test. ***p < 0.001, **p < 0.01, and *p < 0.05 versus LPS treated control sample.

HJPHBN_2018_v44n4_465_f0004.png 이미지

Figure 4. Effect of chloroform fraction of M. officinalis 100% EtOH extract on the production of IL-6 (A) and TNF-α (B) cytokine in RAW 264.7 cells. LPS induced RAW 264.7 cells were treated with various concentration of samples (25, 50 and 100 μg/mL). Control: non-treated control. Quercetin (0.5 mM). Statistical significance of differences was evaluated using a one-way analysis of variance (ANOVA) followed by Tukey’s test. a, p < 0.001 versus LPS treated control sample. b, p < 0.01 versus LPS treated control sample. c, p < 0.05 versus quercetin treated control sample. d, p < 0.001 versus quercetin treated control sample.

HJPHBN_2018_v44n4_465_f0005.png 이미지

Figure 5. Tyrosinase inhibitory activities of M. officinalis extracts and their fractions. Con: non-treated control. Arbutin (0.5 mM). Statistical significance of differences was evaluated using a one-way analysis of variance (ANOVA) followed by Tukey’s test. ***p < 0.001 versus arbutin treated control sample.

Table1. Total Polyphenol and Flavonoid Contents of M. officinalis Extracts and Their Fractions

HJPHBN_2018_v44n4_465_t0001.png 이미지

References

  1. T. Xie, S. Song, S. Li, L. Ouyang, L. Xia, and J. Huang, Review of natural product databases, Cell Prolif., 48, 398 (2015). https://doi.org/10.1111/cpr.12190
  2. E. C. Milam and A. R. Evan, An approach to cosmeceuticals, J. Drugs Dermatol., 15, 452 (2016).
  3. H. Sies, Oxidative stress: a concept in redox biology and medicine, Redox biology, 4, 180 (2015). https://doi.org/10.1016/j.redox.2015.01.002
  4. G. Bjorklund and S. Chirumbolo, Role of oxidative stress and antioxidants in daily nutrition and human health, Nutrition, 33, 311 (2017). https://doi.org/10.1016/j.nut.2016.07.018
  5. E. D. Lephart, Skin aging and oxidative stress: Equol's anti-aging effects via biochemical and molecular mechanisms, Ageing Res. Rev., 31, 36 (2016). https://doi.org/10.1016/j.arr.2016.08.001
  6. K. Kandola, A. Bowman, and M. A. Birch-Machin, Oxidative stress-a key emerging impact factor in health, ageing, lifestyle and aesthetics, Int. J. Cosmet. Sci., 37, 1 (2015).
  7. R. Medzhitov, Origin and physiological roles of inflammation, Nature, 454, 428 (2008). https://doi.org/10.1038/nature07201
  8. S. Pillai, C. Oresajo, and J. Hayward, Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation-a review, Int. J. Cosmet. Sci., 27, 17 (2005). https://doi.org/10.1111/j.1467-2494.2004.00241.x
  9. U. Panich, T. Onkoksoong, K. Kongtaphan, K. Kasetsinsombat, P. Akarasereenont, and A. Wongkajornsilp, Inhibition of UVA-mediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system, Arch. Pharm. Res., 34, 811 (2011). https://doi.org/10.1007/s12272-011-0515-3
  10. S. Ito and K. Wakamatsu, Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review, Pigment cell res., 16, 523 (2003). https://doi.org/10.1034/j.1600-0749.2003.00072.x
  11. Y. M. Yoon, S. H. Bae, S. K. An, Y. B. Choe, K. J. Ahn, and I. S. An, Effects of ultraviolet radiation on the skin and skin cell signaling pathways, Kor. J. Aesthet. Cosmetol., 11, 417 (2013).
  12. J. W. Kim, H. I. Kim, J. H. Kim, O. C. Kwon, E. S. Son, C. S. Lee, and Y. J. Park, Effects of ganodermanondiol, a new melanogenesis inhibitor from the medicinal mushroom Ganoderma lucidum, Int. J. Mol. Sci., 17, 1798 (2016). https://doi.org/10.3390/ijms17111798
  13. Y. U. Jeong and Y. J. Park, Studies on antioxidant and whitening activities of Salix gracilistyla extracts, J. Soc. Cosmet. Sci. Korea, 44, 317 (2018).
  14. M. Brenner and V. J. Hearing, The protective role of melanin against UV damage in human skin, Photochem. Photobiol., 84, 539 (2008). https://doi.org/10.1111/j.1751-1097.2007.00226.x
  15. S. Parvez, M. Kang, H. S. Chung, C. Cho, M. C. Hong, M. K. Shin, and H. Bae, Survey and mechanism of skin depigmenting and lightening agents, Phytother. Res., 20, 921 (2006). https://doi.org/10.1002/ptr.1954
  16. N. Baurin, E. Arnoult, T. Scior, Q. T. Do, and P. Bernard, Preliminary screening of some tropical plants for anti-tyrosinase activity, J. Ethnopham., 82, 155 (2002). https://doi.org/10.1016/S0378-8741(02)00174-5
  17. V. J. Hearing and K. Tsukamoto, Enzymatic control of pigmentation in mammals, FASEB J., 5, 2902 (1991). https://doi.org/10.1096/fasebj.5.14.1752358
  18. G. Prota, The chemistry of melanins and melanogenesis, Prog. Chem. Org. Nat. Prod., 64, 93 (1995).
  19. P. N. Ravindran, M. Divakaran, and G. S. Pillai, Other herbs and spices: achiote to Szechuan pepper, ed. K. V. Peter, Handbook of herbs and spices, 583, Woodhead Publishing, Sawston, Cambridge (2012).
  20. D. O. Kennedy, W. Little, C. F. Haskell, and A. B. Scholey, Anxiolytic effects of a combination of Melissa ofcinalis and Valeriana ofcinalis during laboratory induced stress, Phytother. Res., 20, 96 (2006). https://doi.org/10.1002/ptr.1787
  21. M. Emamghoreishi and M. S. Talebianpour, Antidepressant effect of Melissa officinalis in the forced swimming test, DARU J. Pharm. Sci., 17, 42 (2009).
  22. C. Ulbricht, T. Brendler, J. Gruenwald, B. Kligler, D. Keifer, T. Abrams, J. Woods, H. Boon, C. Kirkwood, and D. Hackman, Lemon balm (Melissa officinalis L.): an evidence-based systematic review by the natural standard research collaboration, J. Herb. Pharmacother., 5, 71 (2004).
  23. D. O. Kennedy, G. Wake, S. Savelev, N. Tildesley, E. K. Perry, K. A. Wesnes, and A. B. Scholey, Modulation of mood and cognitive performance following acute administration of single doses of Melissa officinalis (Lemon balm) with human CNS nicotinic and muscarinic receptorbinding properties, Neuropsychopharmacology, 28, 1871 (2003). https://doi.org/10.1038/sj.npp.1300230
  24. V. Dewanto, X. Wu, K. K. Adom, and R. H. Liu, Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity, J. Agric. Food Chem., 50, 3010 (2002). https://doi.org/10.1021/jf0115589
  25. M. S. Stankovic, N. Niciforovic, M. Topuzovic, and S. Solujic, Total phenolic content, flavonoid concentrations and antioxidant activity, of the whole plant and plant parts extracts from Teucrium montanum L. var. montanum, f. supinum (L.) Reichenb, Biotechnol. Biotechnol. Equip., 25, 2222 (2011). https://doi.org/10.5504/BBEQ.2011.0020
  26. P. J. Tsai, T. H. Tsai, C. H. Yu, and S. C. Ho, Comparison of NO-scavenging and NO-suppressing activities of different herbal teas with those of green tea, Food Chem., 103, 181 (2007). https://doi.org/10.1016/j.foodchem.2006.08.013
  27. C. C. Wei, C. W. Yu, P. L. Yen, H. Y. Lin, S. T. Chang F. L. Hsu, and V. H. Liao, Antioxidant activity, delayed aging, and reduced amyloid-${\beta}$ toxicity of methanol extracts of tea seed pomace from Camellia tenuifolia, J. Agric. Food Chem., 62, 10701 (2014). https://doi.org/10.1021/jf503192x
  28. Y. S. Velioglu, G. Mazza, L. Gao, and B. D. Oomah, Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products, J. Agric. Food Chem., 46, 4113 (1998). https://doi.org/10.1021/jf9801973
  29. N. Nakatani, Recent advances in the study on natural antioxidants, Nippon Shokuhin Kogyo Gakkaishi, 37, 569 (1990). https://doi.org/10.3136/nskkk1962.37.7_569
  30. K. Nozaki, Current aspect and future condition of phytogenic antioxidants, Fragrance Journal, 6, 99 (1986).
  31. O. Arrigoni and M. C. De Tullio, Ascorbic acid: much more than just an antioxidant, Biochim. Biophys. Acta, 1569, 1 (2002). https://doi.org/10.1016/S0304-4165(01)00235-5
  32. F. Perez-Vizcaino and J. Duarte, Flavonols and cardiovascular disease, Mol. Aspects Med., 31, 478 (2010). https://doi.org/10.1016/j.mam.2010.09.002
  33. K. Ishihara and T. Hirano, IL-6 in autoimmune disease and chronic inflammatory proliferative disease, Cytokine Growth Factor Rev., 13, 357 (2002). https://doi.org/10.1016/S1359-6101(02)00027-8
  34. A. Bounihi, G. Hajjaj, Y. Cherrah, and A. Zellou, Chemical components and neurobehavioral effects of essential oil of Melissa officinalis L. from Morocco, World J. Pharm. Sci., 2, 1206 (2013).
  35. J. M. Sforcin, J. T. Amaral, A. Fernandes Jr, J. P. B. Sousa, and J. K. Bastos, Lemongrass effects on IL-1 ${\beta}$ and IL-6 production by macrophages, Nat. Prod. Res., 23, 1151 (2009). https://doi.org/10.1080/14786410902800681
  36. S. Abe, N. Maruyama, K. Hayama, H. Ishibashi, S. Inoue, H. Oshima, and H. Yamaguchi, Suppression of tumor necrosis factor-alpha-induced neutrophil adherence responses by essential oils, Mediators Inflamm., 12, 323 (2003). https://doi.org/10.1080/09629350310001633342
  37. C. T. Lin, C. J. Chen, T. Y. Lin, J. C. Tung, and S. Y. Wang, Anti-inflammation activity of fruit essential oil from Cinnamomum insularimontanum Hayata, Bioresour. Technol., 99, 8783 (2008). https://doi.org/10.1016/j.biortech.2008.04.041
  38. A. Slominski, D. J. Tobin, S. Shibahara, and J. Wortsman, Melanin pigmentation in mammalian skin and its hormonal regulation, Physiol. Rev., 84, 1155 (2004). https://doi.org/10.1152/physrev.00044.2003
  39. K. Maeda and M. Fukuda, Arbutin: mechanism of its depigmenting action in human melanocyte culture, J. Pharmacol. Exp. Ther., 276, 765 (1995).
  40. Y. H. Cao and R. H. Cao, Angiogenesis inhibited by drinking tea, Nature, 398, 381 (1999). https://doi.org/10.1038/18793
  41. H. L. Madsen and G. Bertelsen, Spices as antioxidants, Trends Food Sci. Technol., 6, 271 (1995). https://doi.org/10.1016/S0924-2244(00)89112-8
  42. F. Shahidi, P. K. Janitha, and P. D. Wanasundara, Phenolic antioxidants, Crit. Rev. Food Sci. Nutr., 32, 67 (1992). https://doi.org/10.1080/10408399209527581