Browse > Article
http://dx.doi.org/10.15230/SCSK.2018.44.4.465

Studies on Antioxidant, Anti-inflammation and Tyrosinase Inhibitory Activities of Melissa officinalis Extracts and Their Fractions  

Jeong, Yong Un (Department of Integrated Biosciences, College of Biomedical and Health Science, Konkuk University)
Lee, Hwan (Department of Integrated Biosciences, College of Biomedical and Health Science, Konkuk University)
Park, Haney (Department of Integrated Biosciences, College of Biomedical and Health Science, Konkuk University)
Kim, Kyungmin (Jeju R&D Center, AMI Cosmetics Co., Ltd.)
Kim, Suyeong (Jeju R&D Center, AMI Cosmetics Co., Ltd.)
Park, Young Jin (Department of Integrated Biosciences, College of Biomedical and Health Science, Konkuk University)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.44, no.4, 2018 , pp. 465-475 More about this Journal
Abstract
This study was carried out to evaluate the antioxidant, anti-inflammation, and tyrosinase inhibitory activity of Melissa officinalis extracts and their fractions. The total polyphenol contents of the extracts were 33.02-302.76 mg GAE/g and total flavonoid contents were 9.98-325.07 mg CE/g. In 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, DPPH radical scavenging activity was observed in the extracts and water fractions of M. officinalis and similar to that of ascorbic acid ($30{\mu}M$). In addition, the treatment of chloroform fraction significantly inhibited the production of nitric oxide (NO) in RAW 264.7 cells, indicating that they have anti-inflammatory activity. Tyrosinase inhibitory activity of $200{\mu}g/mL$ of 100% ethanol reflux extract showed better inhibitory activity than arbutin treatment at statistically significant level. As a result, it is considered that M. officinalis can be used as an effective cosmetic ingredient having antioxidant, anti-inflammation, and whitening activity.
Keywords
antioxidant; anti-inflammation; tyrosinase; M. officinalis; whitening activity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. U. Jeong and Y. J. Park, Studies on antioxidant and whitening activities of Salix gracilistyla extracts, J. Soc. Cosmet. Sci. Korea, 44, 317 (2018).
2 M. Brenner and V. J. Hearing, The protective role of melanin against UV damage in human skin, Photochem. Photobiol., 84, 539 (2008).   DOI
3 S. Parvez, M. Kang, H. S. Chung, C. Cho, M. C. Hong, M. K. Shin, and H. Bae, Survey and mechanism of skin depigmenting and lightening agents, Phytother. Res., 20, 921 (2006).   DOI
4 N. Baurin, E. Arnoult, T. Scior, Q. T. Do, and P. Bernard, Preliminary screening of some tropical plants for anti-tyrosinase activity, J. Ethnopham., 82, 155 (2002).   DOI
5 V. J. Hearing and K. Tsukamoto, Enzymatic control of pigmentation in mammals, FASEB J., 5, 2902 (1991).   DOI
6 G. Prota, The chemistry of melanins and melanogenesis, Prog. Chem. Org. Nat. Prod., 64, 93 (1995).
7 P. N. Ravindran, M. Divakaran, and G. S. Pillai, Other herbs and spices: achiote to Szechuan pepper, ed. K. V. Peter, Handbook of herbs and spices, 583, Woodhead Publishing, Sawston, Cambridge (2012).
8 D. O. Kennedy, W. Little, C. F. Haskell, and A. B. Scholey, Anxiolytic effects of a combination of Melissa ofcinalis and Valeriana ofcinalis during laboratory induced stress, Phytother. Res., 20, 96 (2006).   DOI
9 M. Emamghoreishi and M. S. Talebianpour, Antidepressant effect of Melissa officinalis in the forced swimming test, DARU J. Pharm. Sci., 17, 42 (2009).
10 C. Ulbricht, T. Brendler, J. Gruenwald, B. Kligler, D. Keifer, T. Abrams, J. Woods, H. Boon, C. Kirkwood, and D. Hackman, Lemon balm (Melissa officinalis L.): an evidence-based systematic review by the natural standard research collaboration, J. Herb. Pharmacother., 5, 71 (2004).
11 P. J. Tsai, T. H. Tsai, C. H. Yu, and S. C. Ho, Comparison of NO-scavenging and NO-suppressing activities of different herbal teas with those of green tea, Food Chem., 103, 181 (2007).   DOI
12 D. O. Kennedy, G. Wake, S. Savelev, N. Tildesley, E. K. Perry, K. A. Wesnes, and A. B. Scholey, Modulation of mood and cognitive performance following acute administration of single doses of Melissa officinalis (Lemon balm) with human CNS nicotinic and muscarinic receptorbinding properties, Neuropsychopharmacology, 28, 1871 (2003).   DOI
13 V. Dewanto, X. Wu, K. K. Adom, and R. H. Liu, Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity, J. Agric. Food Chem., 50, 3010 (2002).   DOI
14 M. S. Stankovic, N. Niciforovic, M. Topuzovic, and S. Solujic, Total phenolic content, flavonoid concentrations and antioxidant activity, of the whole plant and plant parts extracts from Teucrium montanum L. var. montanum, f. supinum (L.) Reichenb, Biotechnol. Biotechnol. Equip., 25, 2222 (2011).   DOI
15 C. C. Wei, C. W. Yu, P. L. Yen, H. Y. Lin, S. T. Chang F. L. Hsu, and V. H. Liao, Antioxidant activity, delayed aging, and reduced amyloid-${\beta}$ toxicity of methanol extracts of tea seed pomace from Camellia tenuifolia, J. Agric. Food Chem., 62, 10701 (2014).   DOI
16 Y. S. Velioglu, G. Mazza, L. Gao, and B. D. Oomah, Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products, J. Agric. Food Chem., 46, 4113 (1998).   DOI
17 N. Nakatani, Recent advances in the study on natural antioxidants, Nippon Shokuhin Kogyo Gakkaishi, 37, 569 (1990).   DOI
18 K. Nozaki, Current aspect and future condition of phytogenic antioxidants, Fragrance Journal, 6, 99 (1986).
19 K. Ishihara and T. Hirano, IL-6 in autoimmune disease and chronic inflammatory proliferative disease, Cytokine Growth Factor Rev., 13, 357 (2002).   DOI
20 O. Arrigoni and M. C. De Tullio, Ascorbic acid: much more than just an antioxidant, Biochim. Biophys. Acta, 1569, 1 (2002).   DOI
21 A. Bounihi, G. Hajjaj, Y. Cherrah, and A. Zellou, Chemical components and neurobehavioral effects of essential oil of Melissa officinalis L. from Morocco, World J. Pharm. Sci., 2, 1206 (2013).
22 J. M. Sforcin, J. T. Amaral, A. Fernandes Jr, J. P. B. Sousa, and J. K. Bastos, Lemongrass effects on IL-1 ${\beta}$ and IL-6 production by macrophages, Nat. Prod. Res., 23, 1151 (2009).   DOI
23 S. Abe, N. Maruyama, K. Hayama, H. Ishibashi, S. Inoue, H. Oshima, and H. Yamaguchi, Suppression of tumor necrosis factor-alpha-induced neutrophil adherence responses by essential oils, Mediators Inflamm., 12, 323 (2003).   DOI
24 C. T. Lin, C. J. Chen, T. Y. Lin, J. C. Tung, and S. Y. Wang, Anti-inflammation activity of fruit essential oil from Cinnamomum insularimontanum Hayata, Bioresour. Technol., 99, 8783 (2008).   DOI
25 A. Slominski, D. J. Tobin, S. Shibahara, and J. Wortsman, Melanin pigmentation in mammalian skin and its hormonal regulation, Physiol. Rev., 84, 1155 (2004).   DOI
26 K. Maeda and M. Fukuda, Arbutin: mechanism of its depigmenting action in human melanocyte culture, J. Pharmacol. Exp. Ther., 276, 765 (1995).
27 Y. H. Cao and R. H. Cao, Angiogenesis inhibited by drinking tea, Nature, 398, 381 (1999).   DOI
28 H. L. Madsen and G. Bertelsen, Spices as antioxidants, Trends Food Sci. Technol., 6, 271 (1995).   DOI
29 F. Shahidi, P. K. Janitha, and P. D. Wanasundara, Phenolic antioxidants, Crit. Rev. Food Sci. Nutr., 32, 67 (1992).   DOI
30 F. Perez-Vizcaino and J. Duarte, Flavonols and cardiovascular disease, Mol. Aspects Med., 31, 478 (2010).   DOI
31 K. Kandola, A. Bowman, and M. A. Birch-Machin, Oxidative stress-a key emerging impact factor in health, ageing, lifestyle and aesthetics, Int. J. Cosmet. Sci., 37, 1 (2015).
32 T. Xie, S. Song, S. Li, L. Ouyang, L. Xia, and J. Huang, Review of natural product databases, Cell Prolif., 48, 398 (2015).   DOI
33 E. C. Milam and A. R. Evan, An approach to cosmeceuticals, J. Drugs Dermatol., 15, 452 (2016).
34 H. Sies, Oxidative stress: a concept in redox biology and medicine, Redox biology, 4, 180 (2015).   DOI
35 G. Bjorklund and S. Chirumbolo, Role of oxidative stress and antioxidants in daily nutrition and human health, Nutrition, 33, 311 (2017).   DOI
36 E. D. Lephart, Skin aging and oxidative stress: Equol's anti-aging effects via biochemical and molecular mechanisms, Ageing Res. Rev., 31, 36 (2016).   DOI
37 R. Medzhitov, Origin and physiological roles of inflammation, Nature, 454, 428 (2008).   DOI
38 S. Ito and K. Wakamatsu, Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review, Pigment cell res., 16, 523 (2003).   DOI
39 S. Pillai, C. Oresajo, and J. Hayward, Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation-a review, Int. J. Cosmet. Sci., 27, 17 (2005).   DOI
40 U. Panich, T. Onkoksoong, K. Kongtaphan, K. Kasetsinsombat, P. Akarasereenont, and A. Wongkajornsilp, Inhibition of UVA-mediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system, Arch. Pharm. Res., 34, 811 (2011).   DOI
41 Y. M. Yoon, S. H. Bae, S. K. An, Y. B. Choe, K. J. Ahn, and I. S. An, Effects of ultraviolet radiation on the skin and skin cell signaling pathways, Kor. J. Aesthet. Cosmetol., 11, 417 (2013).
42 J. W. Kim, H. I. Kim, J. H. Kim, O. C. Kwon, E. S. Son, C. S. Lee, and Y. J. Park, Effects of ganodermanondiol, a new melanogenesis inhibitor from the medicinal mushroom Ganoderma lucidum, Int. J. Mol. Sci., 17, 1798 (2016).   DOI