DOI QR코드

DOI QR Code

Uranium Levels in Groundwater of CGS (Community Groundwater System) of Korea

국내 마을상수도 지하수의 우라늄 함량

  • Cho, Byong-Wook (Groundwater and Ecohydrology Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Moon-Su (Soil and Groundwater Research Division, National Institute of Environmental Research) ;
  • Kim, Dong-Su (Soil and Groundwater Research Division, National Institute of Environmental Research) ;
  • Hwang, Jae-Hong (Geoscience Data Center, Korea Institute of Geoscience and Mineral Resources)
  • 조병욱 (한국지질자원연구원 지하수생태연구센터) ;
  • 김문수 (국립환경과학원 토양지하수연구과) ;
  • 김동수 (국립환경과학원 토양지하수연구과) ;
  • 황재홍 (한국지질자원연구원 지질자원데이터센터)
  • Received : 2018.08.06
  • Accepted : 2018.11.05
  • Published : 2018.12.28

Abstract

The uranium concentrations were determined in groundwater collected from 3,820 community groundwater system (CGS) located in remote rural areas where access to the nationwide water work is not easy. The frequency distribution of uranium concentrations shows a lognormal distribution which is common in most radionuclide surveys. The measured maximum uranium concentration was $1,757.0{\mu}g/L$ with an average of $6.46{\mu}g/L$ and a median of $0.76{\mu}g/L$. When grouping the uranium concentration results of CGS into 10 geological units, the median uranium concentration was high ($0.99-2.05{\mu}g/L$) in three granite areas, and low in sedimentary rocks areas and porous volcanic rocks areas ($0.04-0.50{\mu}g/L$). Of the 3,820 samples, 3.8% are above the guideline value of $30{\mu}g/L$ (WHO, 2011). On the other hand, the exceeding rates of JGRA and PGRA CGS are 8.5% and 7.5%, respectively. Therefore, attention should be paid for the development of new CGS along with the management of the existing CGS in JGRA and PGRA areas.

광역상수도의 이용이 어려운 농촌지역의 식수원으로 사용되고 있는 3,820개 마을상수도 지하수의 우라늄 함량을 분석하였다. 전체 마을상수도 지하수의 함량분포는 다수의 데이터가 낮은 농도 값의 범위에 치우쳐 있는 상태를 보였으며 최고 함량은 $1,757.0{\mu}g/L$, 평균 함량은 $6.46{\mu}g/L$, 중앙값은 $0.76{\mu}g/L$으로 나타났다. 3,820개 지하수의 우라늄 함량을 10개의 지질로 분류하면 3개 화강암지역 지하수의 우라늄 함량 중앙값이 높으며($0.99-2.05{\mu}g/L$), 퇴적암과 다공성화산암지역 지하수의 우라늄 함량 중앙값은 $0.04-0.50{\mu}g/L$으로 낮았다. 전체 마을상수도 지하수의 우라늄 함량이 USEPA의 기준치인 $30{\mu}g/L$를 초과하는 비율은 3.8%이나 쥬라기화강암과 선캠브리아기화강암지역의 초과율은 각각 8.5%, 7.5%나 되어 이 지역에서는 기존 마을상수도 지하수의 우라늄 관리와 함께 신규 마을상수도 지하수의 개발에 주의가 요구된다.

Keywords

JOHGB2_2018_v51n6_543_f0001.png 이미지

Fig. 1. A simplified geological map of the area (A brief description of the units is given in Table 1).

JOHGB2_2018_v51n6_543_f0002.png 이미지

Fig. 2. Histograms showing the distribution of uranium concentrations of the 3,820 CGS.

JOHGB2_2018_v51n6_543_f0003.png 이미지

Fig. 3. Spatial distribution of uranium concentrations from 3,820 CGS groundwaters.

JOHGB2_2018_v51n6_543_f0004.png 이미지

Fig. 4. Box plot showing uranium concentration for each geological unit.

Table 1. Descriptions of the 10 geological units

JOHGB2_2018_v51n6_543_t0001.png 이미지

Table 2. Statistical analysis of the uranium concentrations (μg/L) in the CGS groundwaters from different geological units

JOHGB2_2018_v51n6_543_t0002.png 이미지

Table 3. Uranium concentrations in groundwaters from various countries

JOHGB2_2018_v51n6_543_t0003.png 이미지

Table 4. Uranium concentrations in groundwaters from various countries

JOHGB2_2018_v51n6_543_t0004.png 이미지

Table 5. International uranium guidance levels (μg/L) for drinking water

JOHGB2_2018_v51n6_543_t0005.png 이미지

References

  1. AERB (Atomic Energy Regulatory Board) (2004) Directive for limit on uranium in drinking water, India. Mumbai: Atomic Energy Regulatory Board.
  2. Asikainen, M. and Kahlos, H. (1979) Anomalously high concentrations of uranium, radium and radon in water from drilled wells in the Helsinki region, Geochim. et Cosmochem. Acta, v.43, p.1681-1686. https://doi.org/10.1016/0016-7037(79)90187-X
  3. Barcelona, M.J., Gibb, J.P., Helfrich, J.A. and Garske, E.E. (1985) Practical guide for groundwater sampling, SWS Contract Report, 374p.
  4. Betcher, R.N., Gascoyne, M. and Brown, D. (1988) Uranium in groundwaters of southeastern Manitoba, Canada, Can. J. Earth Sci., v.25, p.2089-2103. https://doi.org/10.1139/e88-193
  5. Berisha, F. and Goessler, W. (2013) Uranium in Kosovo's drinking water, Chemosphere, v.93, p.2165-2170. https://doi.org/10.1016/j.chemosphere.2013.07.078
  6. Birke, M., Rauch, U., Lorenz, H. and Kringel, R. (2010) Distribution of uranium in German bottled and tap water, J. Geochem. Explor., v.107, p.272-282. https://doi.org/10.1016/j.gexplo.2010.04.003
  7. Cho, B.W. (2017) Uranium concentrations in groundwater of the Goesan area, Korea, J. Korean Soc. Eng. Geol., v.50, p.353-361.
  8. Choi, B.S. (1999) Determination of aquifer characteristics from specific capacity data of wells in Cheju Island (in Korean with English abstract). J. Korea Soc. Groundw. Environ., v.16, p.180-187.
  9. Choo, C.O. (2002) Characteristics of uraniferous minerals in Daebo granite and significance of mineral species, J. Mineral Soc. Korea, v.15, p.11-21.
  10. Cothern, C.R. and Rebers, P.A. (1990), Radium and uranium in drinking water, Lewis Publishers, Inc, Chelsea, Michigan, p.286.
  11. Dillon, M.E., Carter, G.L., Arra, R. and Kahn, B. (1997) Radon concentrations in groundwater of Georgia piedmont, Health Phys., v.60, p.229-236.
  12. Godoy, J.M. and Godoy, M.L. (2006) Natural radioactivity in Brazilian groundwater. J. Environ. Radioact., v.85, p.71-83. https://doi.org/10.1016/j.jenvrad.2005.05.009
  13. Health Canada (2014) Guidelines for Canadian Drinking Water Quality-Summary Table. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario.
  14. Hess, C.T., Michel, J., Horton, T.R., Prechard, H.M. and Coniglio, W.A. (1985) The occurrence of radioactivity in public water supplies in the United States, Health Phys., v.48, p.553-586. https://doi.org/10.1097/00004032-198505000-00002
  15. Hwang, J. (2010) Hydrochemistry of groundwater in the uraniferous sedimentary rocks of the Ogcheon belt, Republic of Korea, J. Korean Earth Sci. Soc., v.31, p.205-213. https://doi.org/10.5467/JKESS.2010.31.3.205
  16. Kurttio, P., Auvinen, A., Salonen, L., Saha, H., Pekkanen, J., Makelainen, S., Vaisanen, S., Pentila, I. and Komulainen, H. (2002) Renal effects of uranium in drinking water, J. Environ. Health Perspect., v.110, p.337-342.
  17. Lahermo, P, Tarvainen, T., Hatakka, T., Huikuri, P., Ilmasti, M., Juntunen, R., Karhu, J., Kortelainen, N., Nikkarinen, M. and Vaisanen, U. (2001) Chemical composition of well water in Finland-main results of the 'one thousand wells'project. Geological Survey of Finland, Current Research 1999-2000, special paper 31 p.57-76
  18. MOE (Ministry of Environment), 2010. Status of Community Groundwater System in 2009.
  19. NFA (National Food Administration) (2005) A risk assessment of uranium in drinking water (Svensson, K., Darnerud, P.O. and Skerfving, S.), Livsmedelsverket, National Food Administration of Sweden, Rapport 10-2005, 32p.
  20. NHMRC (National Health and Medical Research) (2015) Australian Drinking Water Guidelines 6, National Health and Medical Research Council. Version 3.1.
  21. NIER (2002) Study on the radionuclide concentrations in the groundwater (IV), KIGAM, 357p.
  22. NIER (2015) Studies on the naturally occurring radionuclides in groundwater in the multi-geologic areas (15), KIGAM, NIER-SP2015-386, 203p.
  23. NIER (2016) Studies on the naturally occurring radionuclides in groundwater, KIGAM, 213p.
  24. Noh, H.J., Jeong, D.H., Yoon, J.K., Kim, M.S., Ju, B.K., Jeon, S.S. and Kim, T.S. (2011) Natural reduction characteristics of radon in drinking groundwater. J. Korea Soc. Groundw. Environ., v.16, 12-18.
  25. Pinti, D.L., Retailleau, S., Barnetche, D., Moreira, F., Mortiz A.M., Larocque, M., Gelinas, Y., Lefebvre, R., Helie, J.F. and Valadez, A. (2014) $^{222}Rn$ activity in groundwater of the St. Lawrence Lowlands, Quebec, eastern Canada: relation with local geology and health hazard. J. Environ. Radioact., v.136, p.206-217. https://doi.org/10.1016/j.jenvrad.2014.05.021
  26. Reimann, C. Hall, GEM, Siewers, U. (1996) Radon, fluoride and 62 elements as determined by ICP-MS in 45 Norwegian hard rock groundwater samples, Sci. Total. Environ. v.192, p.1-19. https://doi.org/10.1016/0048-9697(96)05272-2
  27. Salonen, L. and Hukkanen, H. (1997) Advantages of lowbackground liquid scintillation alpha-spectrometry and pulse shape analysis in measuring radon, uranium, and radium-226 in groundwater samples, J. Radioanalytical and Nuclear Chemistry, v.226, 967-74.
  28. Salonen L. (1994) $^{238}U$ series radionuclides as a source of increased radioactivity in groundwater originating from Finnish bedrock, future groundwater resources at risk, IAHS Proceeding and Reports, n.222, p.71-84.
  29. Shin, D.B. and Kim, S.J. (2011) Geochemical characteristics of black slate and coaly slate from the uranium deposit in Deokpyeong area, Econ. Environ. Geol., v.44, p.373-386. https://doi.org/10.9719/EEG.2011.44.5.373
  30. Shin, W.S., Oh, J.S., Choung, S.W., Cho, B.W., Lee, K.S., Woo, N.C. and Kim, H.K. (2016) Distribution and potential health risk of groundwater uranium in Korea, Chemosphere, v.163, p.108-115. https://doi.org/10.1016/j.chemosphere.2016.08.021
  31. Smedley, P.L., Smith, B., Abesser C. and Lapworth, D. (2005) Uranium occurrence and behavior in British groundwater, British Geological Survey (Report number: CR/06050N)
  32. Skeppstrom, K. and Olofsson, B. (2007) Uranium and radon in groundwater, European Water, 17/18, p.51-62.
  33. Stalder, E., Blanc, A., Haldimann, M. and Dudler, V. (2012) Occurrence of uranium in Swiss drinking water, Chemosphere, v.86, p.672-679. https://doi.org/10.1016/j.chemosphere.2011.11.022
  34. Telahigue, F., Agoubi, B., Soudid, F. and Kharroubi, A. (2018) Groundwater chemistry and radon-222 distribution in Jerba island, Tunisia. Environ. Radioact., v.182, p.74-84. https://doi.org/10.1016/j.jenvrad.2017.11.025
  35. USEPA (United States Environmental Protection Agency (2009) National Primary Drinking Water Regulations.
  36. USGS (United States Geological Survey) (2011) Trace elements and radon in groundwater across the United States, 1992-2003, National Water-Quality Assessment Program, U.S. Geological Survey, Scientific Investigations Report 2011-5059, 115p.
  37. Voutilainen, A., Makelainen, I., Huikuri, P. and Salonen, L. (2000) Radon atlas of wells drilled into bedrock in Finland. STUK-A171. Helsinki: Sateilyturvakeskus.
  38. WHO (World Health Organization) (2011) Guidelines for drinking water quality. Chapter 9. Radiological aspects, 4th edition. World Health Organization, Geneva.
  39. Wu, Y., Wang, Y. and Xie, X. (2014) Occurrence, behavior and distribution of high levels of uranium in shallow groundwater at Datong basin, northern China, Sci. Total Environ., v.472, p.809-817. https://doi.org/10.1016/j.scitotenv.2013.11.109
  40. Yun, S.W., Lee, J.Y. and Park, Y.C. (2016) Occurrence of radionuclides in groundwater of Korea according to the geological condition, J. Korean Soc. Eng. Geol., v.26, p.71-78.