DOI QR코드

DOI QR Code

Performance of Adaptive Maximum Torque Per Amp Control at Multiple Operating Points for Induction Motor Drives

유도전동기 드라이브에서의 단위전류당 최대토크적응 제어기의 다운전점에서의 성능 연구

  • Kwon, Chun-Ki (Department of Medical IT Engineering, Soonchunhyang University) ;
  • Kong, Yong-Hae (Department of Medical IT Engineering, Soonchunhyang University)
  • 권춘기 (순천향대학교 의료IT공학과) ;
  • 공용해 (순천향대학교 의료IT공학과)
  • Received : 2018.01.02
  • Accepted : 2018.03.09
  • Published : 2018.03.31

Abstract

The highly efficient operation of induction motors has been studied in the past years. Among the many attempts made to obtain highly efficient operation, Maximum Torque Per Amp (MTPA) controls in induction motor drives were proposed. This method enables induction motor drives to operate very efficiently since it achieves the desired torque with the minimal stator current. This is because the alternate qd induction motor model (AQDM) is a highly accurate mathematical model to represent the dynamic characteristics of induction motors. However, it has been shown that the variation of the rotor resistance degrades the performance of the MTPA control significantly, thus leading to its failure to satisfy the maximum torque per amp condition. To take into consideration the mismatch between the actual value of the rotor resistance and its parameter value in the design of the control strategy, an adaptive MTPA control was proposed. In this work, this adaptive MTPA control is investigated in order to achieve the desired torque with the minimum stator current at multiple operating points. The experimental study showed that (i) the desired torque was accurately achieved even though there was a deviation of the order of 5% from the commanded torque value at a torque reference of 25 Nm (tracking performance), and (ii) the minimum stator current for the desired torque (maximum torque per amp condition) was consistently satisfied at multiple operating points, as the rotor temperature increased.

유도전동기를 고효율로 제어하기 위한 다양한 연구가 진행되어 왔다. 그 중에서 단위전류당 최대토크 제어기는 최소한의 고정자 전류로 원하는 토크를 제공하기 때문에 유도전동기 드라이브에서 고효율의 동작을 제공한다. 이는 유도전동기를 수학적으로 정밀하게 표현하는 대안모델을 기반으로 제어기가 설계되었기 때문이다. 그러나, 온도 변화에 따른 회전자 저항의 변이는 대안모델의 파라미터와 실제의 유도전동기의 파라미터의 불일치가 발생하여 단위전류당 최대토크 성능을 심각하게 저해하고 단위전류당 최대토크 제어 조건을 만족하지 못하게 하게 있다. 이러한 유도전동기의 운전시에 발생하는 열적 상승으로 인한 파라미터 값의 변화를 고려하는 단위전류당 최대토크적응 제어기가 제안되었다. 본 논문에서는 단위전류당 최대토크적응 제어기가 다수의 운전영역에서도 최소의 고정자 전류로 원하는 토크를 성취하는지를 검토하였다. 실험을 통한 연구에서 회전자의 온도가 증가하더라도 다수의 운전영역에서 25Nm의 토크 명령에서 5%의 차이가 존재하더라도 토크 명령을 정확하게 추구하고 또한, 원하는 토크를 최소한의 고정자 전류로 얻어짐을 확인함으로써 단위전류당 최대토크적응 제어기의 우수성을 검증하였다.

Keywords

References

  1. M. N. Uddin, Sang Woo Nam, "New Online Loss-Minimization-Based Control of an Induction Motor Drive," IEEE transactions on Power Electronics, vol. 23, pp. 926-933, March 2008. DOI: https://doi.org/10.1109/TPEL.2007.915029
  2. Y. Wang, J. Arribas, T. Ito, and R. Lorenz, "Loss Manipulation Capabilities of Deadbeat Direct Torque and Flux Control Induction Motor Drives," IEEE transactions on Industry Applications, vol. 51, no. 6, pp. 4554-4566, 2015. DOI: https://doi.org/10.1109/TIA.2015.2455030
  3. S. Odhano, R. Bojoi, A. Boglietti, S. Rosu, and G. Griva, "Maximum Efficiency per Torque Direct Flux Vector Control of Induction Motor Drives," IEEE Transactions on Industry Applications, vol. 51, no. 6, pp. 4415 - 4424, 2015. DOI: https://doi.org/10.1109/TIA.2015.2448682
  4. O. S. Ebrahim, M. A. Badr, A. S. Elgendy, P. K. Jain, " ANN-Based Optimal Energy Control of Induction Motor Drive in Pumping," IEEE transactions on Energy Conversion, vol. 25, no. 3, pp. 652-660, 2010. DOI: https://doi.org/10.1109/TEC.2010.2041352
  5. Y. Liu and A. Bazzi, "A Comprehensive Analytical Power Loss Model of an Induction Motor Drive System with Loss Minimization Control," 2015 IEEE International Electric Machines & Drives Conference (IEMDC), pp. 1638-1643, May 2015.
  6. S. Gennaro, J. Dominguez, and M. Meza, "Sensorless High Order Sliding Mode Control of Induction Motors with Core Loss," IEEE Transactions on Industrial Electronics, vol. 61, no. 6, pp. 2678-2689, 2014. DOI: https://doi.org/10.1109/TIE.2013.2276311
  7. M. Farasat, A. Trzynadlowski, and M. Fadali, " Efficiency Improved Sensorless Control Scheme for Electric Vehicle Induction Motors," IET Electrical Systems in Transportation, pp. 122-131, December 2014.
  8. C. Kwon, S. D. Sudhoff, "Genetic Algorithm-based Induction Machine Characterization Procedure with Application to Maximum Torque Per Amp Control," IEEE Transactions on Energy Conversion, vol. 21, pp. 405-415, 2006. DOI: https://doi.org/10.1109/TEC.2006.874224
  9. O. Wasynczuk, S.D. Sudhoff, K.A. Corzine, J.L. Tichenor, P.C. Krause, I.G. Hansen, and L.M. Taylor, "A Maximum Torque Per Ampere Control Strategy for Induction Motor Drives," IEEE Transactions on Energy Conversion, vol. 13, no. 2, pp. 163-169, June 1998. DOI: https://doi.org/10.1109/60.678980
  10. S. D. Sudhoff, D. C. Aliprantis, B. T. Kuhn , and P. L. Chapman, "An Induction Machine Model for Predicting Inverter - Machine Interaction," IEEE Transactions on Energy Conversion, vol. 17, pp. 203-210, June 2002. DOI: https://doi.org/10.1109/TEC.2002.1009469
  11. T. A. Najafabadi, F. R. Salmasi, P. Jabehdar-Maralani, "Detection and Isolation of Speed-, DC-Link Voltage-, and Current-Sensor Faults Based on an Adaptive Observer in Induction-Motor," IEEE Transaction on industrial electronics, vol. 58, no. 5, pp. 1662-1672, 2011. DOI: https://doi.org/10.1109/TIE.2010.2055775
  12. T . Orlowska-Kowalska, M. Dybkowski, "Stator-Current-Based MRAS Estimator for a Wide Range Speed-Sensorless Induction-Motor," IEEE Transaction on industrial electronics, vol. 57, no. 4, pp. 1296-1308, 2010. DOI: https://doi.org/10.1109/TIE.2009.2031134
  13. C. Kwon, S. D. Sudhoff, "An On-line Rotor Resistance Estimator for Induction Machine Drives ," the 2005 International Electric Machines and Drives Conference, pp. 391-397, May 2005.
  14. M. Barut, R. Demir, E. Zerdali, R. Inan, "Real-Time Implementation of Bi Input-Extended Kalman Filter-Based Estimator for Speed-Sensorless Control of Induction Motors," IEEE transactions on Industrial Electronics, vol. 59, pp. 4197-4206, 2012. DOI: https://doi.org/10.1109/TIE.2011.2178209
  15. L. Amezquita-Brooks, J. Liceaga-Castro, E. Liceaga- Castro, "Speed and Position Controllers Using Indirect Field Oriented Control: A Classical Control Approach," IEEE transactions on Industrial Electronics, vol. 61, no. 4, pp. 1928-1943, 2013. DOI: https://doi.org/10.1109/TIE.2013.2262750
  16. M.S. Zaky, "Stability Analysis of Speed and Stator Resistance Estimators for Sensorless Induction Motor Drives," IEEE transactions on Industrial Electronics, vol. 59, pp. 858-870, 2013. DOI: https://doi.org/10.1109/TIE.2011.2161658
  17. M. Angulo and R. Carrillo-Serrano, "Estimating Rotor Parameters in Induction Motors using High-order Sliding Mode Algorithms," IET Control Theory & Applications, vol. 9, no. 4, pp. 573-578, 2015. DOI: https://doi.org/10.1049/iet-cta.2014.0110
  18. J. Kan, K. Zhang, and Z. Wang, "Indirect Vector Control with Simplified Rotor Resistance Adaptation for Induction Machine," IET Power Electronics, vol. 8, no. 7, pp. 1284-1294, 2015. DOI: https://doi.org/10.1049/iet-pel.2014.0422
  19. P. C. Krause, O. Wasynczuk, S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, IEEE Press, 2002. DOI: https://doi.org/10.1109/9780470544167
  20. "Energy Systems Analysis Consortium (ESAC) Genetic Optimization System Engineering Tool (GOSET) Ver 1.02 ," School of Electrical and Computer Engr., Purdue Univ., West Lafayette, IN, 47907, 2003.
  21. J. Kim, J. Choi, and S. Sul, "Novel Rotor Flux Observer Using Observer Characteristic Function in Complex Vector Space for Field Oriented Induction Motor Drives," IEEE transactions on Industry Applications, vol. 38, pp. 1334-1443, Sep/Oct 2002. DOI: https://doi.org/10.1109/TIA.2002.802994
  22. P. L. Jansen and R. D. Lorenz, "A Physically Insightful Approach to the Design and Accuracy Assessment of Flux Observer for Field Oriented Induction Machine Drives," IEEE Transactions on Industry Applications, vol. 30, no. 1, pp. 101-110. Jan/Feb 1994. DOI: https://doi.org/10.1109/28.273627