• Title/Summary/Keyword: rotor resistance variation

Search Result 55, Processing Time 0.031 seconds

An On-line Rotor Resistance Estimator for Induction Machine Drives

  • Kwon, Chun-Ki
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.354-364
    • /
    • 2009
  • Rotor resistance variation due to changing rotor temperature is a significant issue in the design of induction motor controls. In this work, a new on-line rotor resistance estimator is proposed based on an alternate qd induction machine model which provides better mathematical representation of an induction machine than the classical qd model (which uses constant parameters). This is because the former simultaneously includes leakage saturation, magnetizing path saturation, and distributed circuit effects in the rotor conductors. The comparisons via computer simulation studies show the ability of the proposed estimator to accurately track rotor resistance variation. For the experimental studies, due to the difficulty in measuring the actual rotor resistance, comparison of the controller performance using the proposed estimator, the classical qd model based estimator, and no estimator is made.

A Robust Slip Controller for the Variation of Rotor Resistance of Induction Motors (유도전동기 회전자 저항 변동에 강인한 슬립제어기)

  • Kang, Hyun-Soo;Cho, Soon-Bong;Lee, Taeck-Ki;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.224-226
    • /
    • 1995
  • This paper presents an algorithm that the gain of the slip calculator is correctly adjusted for the variation of the rotor resistance. In the indirect field oriented controller, if the gain (rotor resistance) of the slip calculator is set the incorrect value, the torque and the flux are not properly controlled. Using of the two torque angles (i.e. stationary torque angle and rotating torque angle), we estimate the rotor resistance, and then adjust the gain of the slip calculator for the variation of the rotor resistance. It has been realized to confirm the validity of the proposed algorithm by the simulation results.

  • PDF

The Effects of Variation of Rotor Resistance for the Performance of Vector Control (회전자 저항의 변화가 벡터제어 성능에 미치는 영향)

  • Jeong, Jong-Ho;Lee, Eun-Woong;Cho, Hyun-Kil;Lee, Jong-Han
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.12-14
    • /
    • 1996
  • In this paper, the simulation of the effects of variation of rotor resistance of induction motor for the performance of vector control is presented. Especially, this paper considered the effects as a difference variation of the rotor resistance between slip calculator and induction motor.

  • PDF

Sensorless Vector Control of Induction Motor Compensating the variation of rotor resistance (회전자 저항 변동을 보상한 유도전동기의 센서리스 백터 제어)

  • Park, Chang-Hoon;Kim, Kwang-Yeon;Lee, Taeck-Kie;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.140-143
    • /
    • 1991
  • This paper describes a compensation method for the rotor resistance variation of induction machines in speed sensor-less vector control system using MRAS(model reference adaptive system). In case of rotor resistance variation, the analysis of the conventional speed sensor-less vector control system using MRAS is presented and the compensation method for rotor resistance variation using Fuzzy logic is proposed. In order to confirm the performance of the proposed algorithm, computer simulation is performed.

  • PDF

Adaptative compensation against Rotor Resistance Variation of Induction Machine for Instantaneous Torque Control (유도전동기의 순시토크제어를 위한 회전자저항 변동의 적응보상 기법)

  • Kim, Soo-Gon;Cha, Jung-Hwa;Son, Jin-Geun;Jeon, Hee-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.412-414
    • /
    • 1996
  • The rotor resistance variation has a large effect on the field oriented control system of induction machine. In this paper, the adaptation technique based on MRAC is used to identify the rotor resistance variation. The criterion function used in the adaptation algorithm is the error function of the two reactive powers of the induction motor. The one is obtained from the voltages and the currents of the stator of the induction motor. And the other is estimated from the rotor flux and stator current. We simulated this control system operated by field oriented control and assured the robustness of the induction motor control system against the rotor resistence variation.

  • PDF

A Study on Efficient Rotor Resistance Identification Algorithm for Induction Motros (유도전동기의 효율적인 회전자 저항 추정 알고리즘에 관한 연구)

  • 오우석;김재윤;김규식
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.239-244
    • /
    • 1998
  • We propose a nonlinear feedback controller that can control the induction motors with high dynamic performance by means of decoupling of motor speed and rotor flux. A new recursive adaptation algorithm for rotor resistance which can be applied to our nonlinear feedback controller is also presented in this paper. Some simulation results show that the adaptation algorithm for rotor resistance is robust against the variation of stator resistance and mutual inductance. In addition, it is computationally simple and has small estimation errors.

  • PDF

DECOUPLING CONTROL OF AN INDUCTION MOTOR WITH RECURSIVE ADAPTATION OF ROTOR RESISTANCE

  • Kim, Gyu-Sik;Kim, Jae-Yoon;Yim, Chung-Hyuk;Kim, Joohn-Sheok
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.23-28
    • /
    • 1998
  • We propose a nonlinear feedback controller that can control the induction motors with high dynamic performance by means of decoupling of motor speed and rotor flux. The nonlinear feedback controller needs the information on some motor parameters. Among them, rotor resistance varies greatly with machine temperature. A new recursive adaptation algorithm for rotor resistance which can be applied to our nonlinear feedback controller is also presented in this paper. The recursive adaptation algorithm makes the estimated value of rotor resistance track its real value. Some simulation results show that the adaptation algorithm for rotor resistance is robust against the variation of stator resistance and mutual inductance. In addition, it is computationally simple and has small estimation errors. To demonstrate the practical significance of our results, we present some experimental results.

  • PDF

Adaptive Compensation Technique of Parameter Variation for Quick Torque Response of an Induction Motor Drive (유도전동기의 속응 토크제어를 위한 파라미터 변동의 적응보상기법)

  • 손진근;정을기;김준환;전희종
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.206-213
    • /
    • 1998
  • In this paper, an adaptive compensation technique for parameter variation is proposed which can perform quick torque response in vector control of an induction motors. To solve the problem of control performance degradation due to parameter variation in an induction motor, a rotor resistance estimation is performed by the model reference adaptive control(MRAC). The algorithm of rotor resistance estimation is composed of the error relationship which is generated between a motor real instantaneous reactive power and an estimated instantaneous reactive power. The advantage of such a real reactive power reference model is independence of the motor parameter variation. The estimation rotor resistance values are applied to the direct vector control system with a flux observer. Finally, the simulations and experiment are presented to validate the rotor resistance estimation algorithm of induction motor.

  • PDF

A new vector control approach for induction motor without influence of rotor resistance and stator resistance variation (회전자와 고정자 저항 변동에 영향을 받지 않는 유도전동기의 새로운 벡터제어 기법)

  • Byun, Yeun-Sub;Baek, Jong-Hyen;Wang, Jong-Bae;Park, Hyun-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2371-2373
    • /
    • 2000
  • This paper presents a new vector control scheme for induction motor. An exact knowledge of the rotor flux position is essential for a high-performance vector control. The position of the rotor flux is measured in the direct scheme and estimated in the indirect schemes. Since the estimation of the flux position requires a priori knowledge of the induction motor parameters, the indirect schemes are machine parameter dependent. The rotor and stator resistance among the parameters change with temperature. Variations in the parameters of induction machine cause deterioration of both the steady state and dynamic operation of the induction motor drive. Several methods have presented to minimize the consequences of parameter sensitivity in indirect scheme. In this paper, new estimation scheme of rotor flux position is presented to eliminate sensitivity due to variation in the resistance. The simulation is executed to verify the proposed vector control performance and to compare its performance with that of indirect vector control.

  • PDF

An Efficient On-line Identification Approach to Rotor Resistance of Induction Motors Without Rotational Transducers

  • Lee, Sang-Hoon;Yoo, Ho-Sun;Ha, In-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.86-93
    • /
    • 1998
  • In this paper, we propose an effective on-line identification method for rotor resistance, which is useful in making speed control of induction motors without rotational transducers robust with respect to the variation in rotor resistance. Our identification method for rotor resistance is based on the linearly perturbed equations of the closed-loop system for sensorless speed control about th operating point. Our identification method for rotor resistance uses only the information of stator currents and voltages. In can provide fairly good identification accuracy regardless of load conditions. Some experimental results are presented to demonstrate the practical use of our identification method. For our experimental work, we have built a sensorless control system, in which all algorithms are implemented on a DSP. Our experimental results confirm that our on-line identification method allows for high precision speed control of commercially available induction motors without rotational transducers.

  • PDF