DOI QR코드

DOI QR Code

The Review of Metabolic Acidosis During Exercise

운동 시 대사적 산성화에 관한 고찰

  • Received : 2018.11.29
  • Accepted : 2018.12.22
  • Published : 2018.12.31

Abstract

The development of acidosis during intense exercise has traditionally been explained by the increased production of lactic acid which causes the release of a proton and the formation of the acid salt sodium lactate. Through this explanation, when the rate of lactate production is high enough to exceed cellular proton buffering capacity, cellular pH is decreased. This biochemical process has been termed lactic acidosis. This belief has been an interpretation that lactate production causes acidosis and fatigue during intense exercise. However, this review provides clear evidence that there is no biochemical support for lactate production causing acidosis and fatigue. Metabolic acidosis is caused by an increased reliance on nonmitochondrial ATP turnover. Lactate production is essential for muscle to produce cytosolic $NAD^+$ to support continued ATP regeneration from glycolysis. In addition, Lactate production consumes protons. Although lactate accumulation can be a good indirect indicator for decreased cellular and blood pH, that is not direct causing acidosis.

고강도 운동 시 산성화의 과정은 수소이온의 방출과 젖산 나트륨염을 형성하는 젖산의 생산 증가에 따른 것이라 설명되어져 왔다. 이 설명에 의하면, 젖산의 생산 비율이 세포내의 수소이온 완충능력을 초과하였을 때 세포의 수소이온 농도는 증가한다고 한다. 이러한 생화학적 과정을 젖산의 산성화라 한다. 이 이론에 따라 고강도 운동 시 젖산의 생산이 대사적 산성화와 피로의 원인이 되는 것으로 해석되어져 왔다. 그러나, 본 고찰에서는 젖산의 생산이 산성화와 피로의 원인이라는 어떠한 생화학적 근거가 없음을 명확히 제시하고 있다. 오히려 젖산의 생산은 해당과정에서 필요한 $NAD^+$의 지속적인 공급을 위해 필수적이며 수소이온을 소비하는 대사과정이다. 젖산의 축적은 세포와 혈중의 수소이온 농도의 증가를 알려주는 좋은 지표가 될 수는 있지만 그것이 산성화의 직접적인 원인은 아니다.

Keywords

HGOHBI_2018_v35n4_1433_f0001.png 이미지

Fig. 1. Chemical structure of lactic acid.

HGOHBI_2018_v35n4_1433_f0002.png 이미지

Fig. 2. The reaction of creatine kinase.

HGOHBI_2018_v35n4_1433_f0003.png 이미지

Fig. 3. Hexokinase reaction.

HGOHBI_2018_v35n4_1433_f0004.png 이미지

Fig. 4. Phosphofructokinase reaction.

HGOHBI_2018_v35n4_1433_f0005.png 이미지

Fig. 5. Glyceraldehydes 3-phosphate dehydrogenase reaction.

HGOHBI_2018_v35n4_1433_f0006.png 이미지

Fig. 6. Phosphoglycerate kinase reaction.

HGOHBI_2018_v35n4_1433_f0007.png 이미지

Fig. 7. Lactate dehydrogenase(LDH) reaction.

HGOHBI_2018_v35n4_1433_f0008.png 이미지

Fig. 8. ATPase reaction.

Table 1. The properties of lactic acid

HGOHBI_2018_v35n4_1433_t0001.png 이미지

Table 2. The reactions of glycolysis

HGOHBI_2018_v35n4_1433_t0002.png 이미지

References

  1. J. M. Metzger, M. L. Greaser, R. L. Moss, "Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. Implications for twitch potentiation in intact muscle", Journal of General Physiology, Vol.93, pp. 855-883, (1989). https://doi.org/10.1085/jgp.93.5.855
  2. H. Hagberg, "Intracellular pH during ischemia in skeletal muscle: relationship to membrane potential, extracellular pH, tissue lactic acid and ATP", Pfliigers Arch, Vol.404, No.4 pp.342-347, (1985). https://doi.org/10.1007/BF00585346
  3. Lehninger AL, The Principles of Biochemistry 2nd Ed. p.342-347, Worth. (1982).
  4. K. Sahlin, M. Tonkonogi, K. Soderlund, "Energy supply and muscle fatigue in humans", Acta Physiol Scand, Vol.162, pp. 261-266, (1998). https://doi.org/10.1046/j.1365-201X.1998.0298f.x
  5. Stryer L, Biochemistry 4th Ed. Freeman.(1995).
  6. Laski ME, Wesson DE, Lactic acidosis. In: Acid-Base and Electrolyte Disorders: A Companion to Brenner and Rector's The Kidney, edited by DuBose TD and Hamm LL. Saunders, (2002).
  7. H. G. Kim, "The response of fatigue in blood based on dance training program in 12weeks", Journal of the Korean Society of Dance Science, Vol.17, pp. 1-12, (2008).
  8. H. E. Jin, "Effects of changes in blood fatigue induction factors following different muscle group recruitment exercise", Exercise Science, Vol.15, pp. 319-328, (2006).
  9. A. Katz, K. Sahlin, "Regulation of lactic acid production during exercise", J Appl Physiol, Vol. 65, pp. 509-518, (1988). https://doi.org/10.1152/jappl.1988.65.2.509
  10. W. Stringer, R. Casaburi, K. Wasserman, "Acid-base regulation during exercise and recovery in humans", J Appl Physiol, Vol.72, pp. 954-961, (1992). https://doi.org/10.1152/jappl.1992.72.3.954
  11. E. J. Park, H. J. Gu, J. K. Lee, "Setting of proper exercise intensity to recover from lactate fatigue", Journal of Korean Association of Physical Education and Sport for Girls and Women, Vol.18, No.1 pp. 67-75, (2004).
  12. Holten CH, Muller A, Rehbinder D, Lactic Acid: Property and Chemistry of Lactic Acid and Derivatives. Verlag Chemie, (1971).
  13. A. V. Hill, C. N. H. Long, H. Lupton, "Muscular exercise, lactic acid and the supply and utilization of oxygen", Proc R Soc Lond B Biol Sci, Vol.16, pp. 84-137, (1924).
  14. M. A. Shampo, R. A. Kyle, "Otto Meyerhoff-Nobel Prize for studies of muscle metabolism", Mayo Clin Proc, Vol.74, pp. 67, (1999). https://doi.org/10.4065/74.1.67
  15. R. Margaria, H. T. Edwards, D. B. Dill, "The possible mechanism of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction", Am J Phyiol, Vol.106, pp. 689-715, (1933). https://doi.org/10.1152/ajplegacy.1933.106.3.689
  16. K. Sahlin, R. C. Harris, B. Nylind, E. Hultman, "Lactate content and pH in muscle samples obtained after dynamic exercise", Pfiigers Arch, Vol.367, pp. 143-149, (1976). https://doi.org/10.1007/BF00585150
  17. W. B. Busa, R. Nuccitelli, "Metabolic regulation via intracellular pH", Am J Physiol Regul Intergr Comp Phsiol, Vol.246, pp. R409-R438, (1984). https://doi.org/10.1152/ajpregu.1984.246.4.R409
  18. S. C. Dennis, W. Gevers, L. H. Opie, "Protons in ischemia: where do they come from; where do they go to?", J Mol Cell Cardiol, Vol.23, pp. 1077-1086, (1991). https://doi.org/10.1016/0022-2828(91)91642-5
  19. D. R. Wilkie, "Generation of protons by metabolic processes other than glycolysis in muscle cells: a critical view", J Mol Cell Cardiol, Vol.11, pp. 325-330, (1979). https://doi.org/10.1016/0022-2828(79)90446-2
  20. J. G. Tafaletti, "Blood lactate: biochemistry, laboratory methods and clinical interpretation", CRC Crit Rev Clin Lab Sci, Vol.28, pp. 253-268, (1991). https://doi.org/10.3109/10408369109106865
  21. Juel, C. (1996). Lactate/proton co-transport in skeletal muscle: regulation and importance for pH homeostasis. Acta Physiol Scand, 156, 369-374. https://doi.org/10.1046/j.1365-201X.1996.206000.x
  22. M. I. Lindinger, G. J. Heigenhauser, "The roles of ion fluxes in skeletal muscle fatigue", Can J Physiol Pharmacol, Vol.69, pp. 246-253, (1991). https://doi.org/10.1139/y91-038
  23. D. A. Roth, G. A. Brooks, "Lactate transport is mediated by a membrane bound carrier in rat skeletal muscle sarcolemmal vesicles", Arch Biochem Biophys, Vol.279, pp. 377-385, (1990). https://doi.org/10.1016/0003-9861(90)90505-S
  24. M. C. Wilson, V. N. Jackson, C. Heddle, N. T. Price, H. Pilegaard, C. Juel, A. Bonen, L. Montgomery, O. F. Hutter, A. P. Halestrap, "Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transport isoform MCT3", J Biol Chem, Vol.273, pp. 15920-15926, (1998). https://doi.org/10.1074/jbc.273.26.15920
  25. E. J. Davis, J. Bremer, K. E. Akerman, "Thermodynamic aspects of translocation of reducing equivalents by mitochondria", J Biol Chem, Vol.255, pp. 2277-2283, (1980).
  26. R. S. Kaplan, "Structure and function of mitochondrial anion transport proteins", J Membr Bilo, Vol.179, pp. 165-183, (2001). https://doi.org/10.1007/s002320010046
  27. H. Westerblad, D. G. Allen, J. Lannergren, "Muscle fatigue: lactic acid or inorganic phosphate the major cause?", News Physiol Sci, Vol.17, pp. 17-21, (2002).