Fig. 1. Picture of a microbubble generator experimental apparatus.
Fig. 3. Comparison between predicted and observed TRV (R2=93.3%, Adjusted R2=92.3%, Predict R2=90.4%)
Fig. 4. 2D Contour plot of response Y (Terminal rise velocity, cm/min) showing interaction (a) between Pressure (bar)(X1) and Airflow rate (LPM)(X2) at fixed 1.75min of Operation time (min)(X3). (b) between Airflow rate (LPM) and Operation time (min)(X3) at fixed 3.75bar of Pressure (bar) (X1), and (c) between Pressure (bar)(X1) and Operation time (min)(X3) at fixed 3LPM of Airflow rate (LPM)(X2).
Fig. 5. Microbubbles size measurement using Laser Trac particle counter.
Fig. 6. Indirect Nanobubble measurement using Laser point.
Fig. 7. Dissolved oxygen measurement (a) DO meter in water tank (b)DO in injection with Air (b) DO in injection with pure oxygen.
Fig. 2. (a) Schematic diagram of rise velocity measurement (a) Before micro bubbles generation (b) Stop device after micro bubbles formation (c) Measurement of micro bubbles rising velocity (d) Increase of micro bubbles rising velocity (e) Complete disappear of micro bubbles.
Table 1. The main part and specifications of Microbubble genearater
Table 2. The main part and specifications of Microbubble genearator
Table 3. The results of terminal rise velocity by operation conditions (Table 2) of microbubble genearator
Table 4. Estimated regression coefficients and corresponding t and P values for Eq. (5)
Table 5. ANOVA results for response parameters
Table 6. Optimization conditions for response Y(Terminal rise velocity)
References
- R. Parmar, S. K. Majumder, "Microbubble generation and microbubble-aided transport process intensification-A state-of-the-art report", Chemical Engineering and Processing, Vol.64, pp. 79-97, (2013). https://doi.org/10.1016/j.cep.2012.12.002
- M. Alheshibri, J. Qian, M. Jehannin, V. S. J. Craig, "A history of nanobubbles", Langmuir, Vol.32, pp. 11,086-11,100, (2016). https://doi.org/10.1021/acs.langmuir.6b02489
- N. Matsuki, T. Ishikawa, S. Ichiba, N. Shiba, Y. Ujike, T. Yamaguchi. " Oxygen supersaturated fluid using fine micro/nanobubbles". Int J Nanomedicine, Vol.9, pp. 4495-4505, (2014).
- A. Agarwal, WJ. Ng, Y. Liu, " Principle and applications of microbubble and nanobubble technology for watertreatment", Chemosphere, Vol.84, pp. 1175-80, (2011). https://doi.org/10.1016/j.chemosphere.2011.05.054
- Z. Zhou, Xu. Zhenghe, J. A. Finch, J. H. Masliyah, R. S. Chow, " On the Role of Cavitation in Particle Collection in Flotation-A Critical Review II", Miner. Eng, Vol.22, pp. 419-433, (2009). https://doi.org/10.1016/j.mineng.2008.12.010
- K. Terasaka, A. Hirabayashi, T. Nishino, S. Fujioka, D. Kobayashi. " Development of microbubble aerator for waste water treatment using aerobic activated sludge". Chem Eng Sci, Vol.66, pp. 3172-3179, (2011). https://doi.org/10.1016/j.ces.2011.02.043
- T. Li, L. Guo, J. Zhao, X. Tang, Y. Zhu, "Optimization of micro-bubble aeration process for magnesium sulfite oxidation in desulphurization wastewater with response surface methodology", Desalination and Water Treatment, Vol.82, pp. 308-314, (2017). https://doi.org/10.5004/dwt.2017.20995
- M. W. Lim, E. V. Lau, P. E. Poh, "Optimization studies for the flotatation of bunker oil from contamianted sand using microbubbles", J. Eng. Sci & Tech, Vol.12, pp. 2046-2063, (2017).
- R. Ahmadi, A. Khodadadi Darban, "Modeling and Optimization of Nano-bubble Generation Process Using Response Surface Methodology", Int. J. Nanosci. Nanotechnol, Vol.9, pp. 151-162, (2013).
- A. Smolianski, H. Haario, P. Luukka, "Numerical study of dynamics of single bubbles and bubble swarms", Applied Mathematical Modelling, Vol.32, pp. 641-659, (2008). https://doi.org/10.1016/j.apm.2007.01.004
-
M. Takahashi, "
${\zeta}$ potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface", J. Phys. Chem. B, Vol.109, pp. 21858-21864, (2005). https://doi.org/10.1021/jp0445270 - R. Parmar, S. K. Majumder, "Microbubble generation and microbubble-aided transport process intensification - a state of-the-art report", Chem. Eng. Process. Process Intensif, Vol.64, 79-97, (2013). https://doi.org/10.1016/j.cep.2012.12.002
- Tsuge H. Micro and Nanobubbles: Fundamentals and Applications. P. 45-77, Pan Stanford Publishing, (2014).
- A.Y Kim, S. K. Yoo, "Process Optimization of Meat Protein Hydrolysate of Ogae Wings by Response Surface Methodology and Its Characteristics Analysis", J. of Korean Oil Chemists' Soc, Vol.15. pp. 63-70, (2010).
- Z. Pourkarimi, B. Rezai, M. Noaparast, "Effective parameters on generation of nanobubbles by cavitation method for froth flotation applications". Physicochem. Probl. Miner. Process, Vol.53, pp. 920-942, (2017).
-
I. H. Cho, K. D. Zoh, "Photocatalytic degradation of azo dye (Reactive Red 120) in
$TiO_2/UV$ system: Optimization and modeling using a response surface methodology (RSM) based on the central composite design", Dyes and Pigments, Vol.75, pp.533-543, (2007). https://doi.org/10.1016/j.dyepig.2006.06.041 - M. Takahashi, K. Chiba, P. Li, "Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus", Japan Journal of Physical Chemistry B, Vol.111, pp.1343-1347, (2007). https://doi.org/10.1021/jp0669254
- T. K. Trinh, L. S. Kang, " Application of Response Surface Method as an Experimental Design to Optimize Coagulation Tests", Environ. Eng. Res, Vol.15, pp. 63-70, (2010). https://doi.org/10.4491/eer.2010.15.2.063
- S. M. Lee, C. M. Jang. "Evaluation for the Numerical Model of a Micro-Bubble Pump", Trans. of the Korean Hydrogen and New Energy Society, Vol.27, pp. 121-126, (2016). https://doi.org/10.7316/KHNES.2016.27.1.121
- S. M. Walke and V. S. Sathe. "Experimental study on comparison of rising velocity of bubbles and light weight particles in the bubble column", International Journal of Chem. Eng. Appl, Vol.3, pp. 25-30, (2012).
- E. Ruckenstein, "Nano dispersions of bubbles and oil drops in water", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.423, pp. 112-114, (2013).
- M. Takahashi, K. Chiba, P. Li, "Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus", Japan Journal of Physical Chemistry B, Vol.111, pp. 1343-1347, (2007). https://doi.org/10.1021/jp0669254
- T. Andinet, I. H. Kim, J. Y. Lee, " Effect of microbubble generator operating parameters on oxygen transfer efficiency in water", Desalination and water treatment, Vol.57, pp. 1-9, (2016). https://doi.org/10.1080/19443994.2016.1119929
- H. Ikeura, H. Takahashi, F. Kobayashi, M. Sato, "Effects of microbubble generation methods and dissolved oxygen concentrations on growth of Japanese mustard spinach in hydroponic culture". Journal of Horticultural Science and Biotechnology, Vol.93, pp. 1-8, (2017).