DOI QR코드

DOI QR Code

Model setup and optimization of the terminal rise velocity of microbubbles using polynomial regression analysis

다항식 회귀분석을 이용한 마이크로 버블의 종말상승속도 모델식 구축 및 운전조건 최적화

  • Received : 2018.12.03
  • Accepted : 2018.12.21
  • Published : 2018.12.31

Abstract

In this study, three parameters (Pressure ($X_1$), Airflow rate ($X_2$), Operation time ($X_3$)) were experimentally designed and the predicted model and optimal conditions were established by using the terminal rise velocity of the microbubbles as the response value. The polynomial regression analysis showed that the optimum value for the terminal rise velocity at the Pressure ($X_1$) of 4.5 bar, Airflow rate ($X_2$) of 3.3 L/min and Operation time ($X_3$) of 2.2 min was 5.14 cm/min ($85.7{\mu}m/sec$). Also, the highest microbubble diameter size distribution in the range of 2 to $5{\mu}m$ and 25 to $50{\mu}m$ was confirmed by using a laser particle counting apparatus.

본 연구는 3개의 운전변수(압력, 공기량, 운전시간)를 실험 설계하고 마이크로 버블의 종말부상속도(Terminal rise velocity)를 반응 값으로 하여 예측식 모델과 최적 조건을 수립하였다. 다항식 회귀분석을 통해 펌프의 압력($X_1$) 4.5bar, 공기량($X_2$) 3.3L/min 그리고 운전시간($X_3$)이 2.2min에서 종말상승속도(Terminal rise velocity)에 대한 최적값인 5.14 cm/min ($85.7{\mu}m/sec$)을 얻었다. 또한, 레이저 입자계수 측정장치를 이용하여 $2{\sim}5{\mu}m$$25{\sim}50{\mu}m$ 영역에서의 가장 높은 마이크로버블 직경크기 분포를 확인하였다.

Keywords

HGOHBI_2018_v35n4_1393_f0001.png 이미지

Fig. 1. Picture of a microbubble generator experimental apparatus.

HGOHBI_2018_v35n4_1393_f0002.png 이미지

Fig. 3. Comparison between predicted and observed TRV (R2=93.3%, Adjusted R2=92.3%, Predict R2=90.4%)

HGOHBI_2018_v35n4_1393_f0003.png 이미지

Fig. 4. 2D Contour plot of response Y (Terminal rise velocity, cm/min) showing interaction (a) between Pressure (bar)(X1) and Airflow rate (LPM)(X2) at fixed 1.75min of Operation time (min)(X3). (b) between Airflow rate (LPM) and Operation time (min)(X3) at fixed 3.75bar of Pressure (bar) (X1), and (c) between Pressure (bar)(X1) and Operation time (min)(X3) at fixed 3LPM of Airflow rate (LPM)(X2).

HGOHBI_2018_v35n4_1393_f0004.png 이미지

Fig. 5. Microbubbles size measurement using Laser Trac particle counter.

HGOHBI_2018_v35n4_1393_f0005.png 이미지

Fig. 6. Indirect Nanobubble measurement using Laser point.

HGOHBI_2018_v35n4_1393_f0006.png 이미지

Fig. 7. Dissolved oxygen measurement (a) DO meter in water tank (b)DO in injection with Air (b) DO in injection with pure oxygen.

HGOHBI_2018_v35n4_1393_f0007.png 이미지

Fig. 2. (a) Schematic diagram of rise velocity measurement (a) Before micro bubbles generation (b) Stop device after micro bubbles formation (c) Measurement of micro bubbles rising velocity (d) Increase of micro bubbles rising velocity (e) Complete disappear of micro bubbles.

Table 1. The main part and specifications of Microbubble genearater

HGOHBI_2018_v35n4_1393_t0001.png 이미지

Table 2. The main part and specifications of Microbubble genearator

HGOHBI_2018_v35n4_1393_t0002.png 이미지

Table 3. The results of terminal rise velocity by operation conditions (Table 2) of microbubble genearator

HGOHBI_2018_v35n4_1393_t0003.png 이미지

Table 4. Estimated regression coefficients and corresponding t and P values for Eq. (5)

HGOHBI_2018_v35n4_1393_t0004.png 이미지

Table 5. ANOVA results for response parameters

HGOHBI_2018_v35n4_1393_t0005.png 이미지

Table 6. Optimization conditions for response Y(Terminal rise velocity)

HGOHBI_2018_v35n4_1393_t0006.png 이미지

References

  1. R. Parmar, S. K. Majumder, "Microbubble generation and microbubble-aided transport process intensification-A state-of-the-art report", Chemical Engineering and Processing, Vol.64, pp. 79-97, (2013). https://doi.org/10.1016/j.cep.2012.12.002
  2. M. Alheshibri, J. Qian, M. Jehannin, V. S. J. Craig, "A history of nanobubbles", Langmuir, Vol.32, pp. 11,086-11,100, (2016). https://doi.org/10.1021/acs.langmuir.6b02489
  3. N. Matsuki, T. Ishikawa, S. Ichiba, N. Shiba, Y. Ujike, T. Yamaguchi. " Oxygen supersaturated fluid using fine micro/nanobubbles". Int J Nanomedicine, Vol.9, pp. 4495-4505, (2014).
  4. A. Agarwal, WJ. Ng, Y. Liu, " Principle and applications of microbubble and nanobubble technology for watertreatment", Chemosphere, Vol.84, pp. 1175-80, (2011). https://doi.org/10.1016/j.chemosphere.2011.05.054
  5. Z. Zhou, Xu. Zhenghe, J. A. Finch, J. H. Masliyah, R. S. Chow, " On the Role of Cavitation in Particle Collection in Flotation-A Critical Review II", Miner. Eng, Vol.22, pp. 419-433, (2009). https://doi.org/10.1016/j.mineng.2008.12.010
  6. K. Terasaka, A. Hirabayashi, T. Nishino, S. Fujioka, D. Kobayashi. " Development of microbubble aerator for waste water treatment using aerobic activated sludge". Chem Eng Sci, Vol.66, pp. 3172-3179, (2011). https://doi.org/10.1016/j.ces.2011.02.043
  7. T. Li, L. Guo, J. Zhao, X. Tang, Y. Zhu, "Optimization of micro-bubble aeration process for magnesium sulfite oxidation in desulphurization wastewater with response surface methodology", Desalination and Water Treatment, Vol.82, pp. 308-314, (2017). https://doi.org/10.5004/dwt.2017.20995
  8. M. W. Lim, E. V. Lau, P. E. Poh, "Optimization studies for the flotatation of bunker oil from contamianted sand using microbubbles", J. Eng. Sci & Tech, Vol.12, pp. 2046-2063, (2017).
  9. R. Ahmadi, A. Khodadadi Darban, "Modeling and Optimization of Nano-bubble Generation Process Using Response Surface Methodology", Int. J. Nanosci. Nanotechnol, Vol.9, pp. 151-162, (2013).
  10. A. Smolianski, H. Haario, P. Luukka, "Numerical study of dynamics of single bubbles and bubble swarms", Applied Mathematical Modelling, Vol.32, pp. 641-659, (2008). https://doi.org/10.1016/j.apm.2007.01.004
  11. M. Takahashi, "${\zeta}$ potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface", J. Phys. Chem. B, Vol.109, pp. 21858-21864, (2005). https://doi.org/10.1021/jp0445270
  12. R. Parmar, S. K. Majumder, "Microbubble generation and microbubble-aided transport process intensification - a state of-the-art report", Chem. Eng. Process. Process Intensif, Vol.64, 79-97, (2013). https://doi.org/10.1016/j.cep.2012.12.002
  13. Tsuge H. Micro and Nanobubbles: Fundamentals and Applications. P. 45-77, Pan Stanford Publishing, (2014).
  14. A.Y Kim, S. K. Yoo, "Process Optimization of Meat Protein Hydrolysate of Ogae Wings by Response Surface Methodology and Its Characteristics Analysis", J. of Korean Oil Chemists' Soc, Vol.15. pp. 63-70, (2010).
  15. Z. Pourkarimi, B. Rezai, M. Noaparast, "Effective parameters on generation of nanobubbles by cavitation method for froth flotation applications". Physicochem. Probl. Miner. Process, Vol.53, pp. 920-942, (2017).
  16. I. H. Cho, K. D. Zoh, "Photocatalytic degradation of azo dye (Reactive Red 120) in $TiO_2/UV$ system: Optimization and modeling using a response surface methodology (RSM) based on the central composite design", Dyes and Pigments, Vol.75, pp.533-543, (2007). https://doi.org/10.1016/j.dyepig.2006.06.041
  17. M. Takahashi, K. Chiba, P. Li, "Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus", Japan Journal of Physical Chemistry B, Vol.111, pp.1343-1347, (2007). https://doi.org/10.1021/jp0669254
  18. T. K. Trinh, L. S. Kang, " Application of Response Surface Method as an Experimental Design to Optimize Coagulation Tests", Environ. Eng. Res, Vol.15, pp. 63-70, (2010). https://doi.org/10.4491/eer.2010.15.2.063
  19. S. M. Lee, C. M. Jang. "Evaluation for the Numerical Model of a Micro-Bubble Pump", Trans. of the Korean Hydrogen and New Energy Society, Vol.27, pp. 121-126, (2016). https://doi.org/10.7316/KHNES.2016.27.1.121
  20. S. M. Walke and V. S. Sathe. "Experimental study on comparison of rising velocity of bubbles and light weight particles in the bubble column", International Journal of Chem. Eng. Appl, Vol.3, pp. 25-30, (2012).
  21. E. Ruckenstein, "Nano dispersions of bubbles and oil drops in water", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.423, pp. 112-114, (2013).
  22. M. Takahashi, K. Chiba, P. Li, "Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus", Japan Journal of Physical Chemistry B, Vol.111, pp. 1343-1347, (2007). https://doi.org/10.1021/jp0669254
  23. T. Andinet, I. H. Kim, J. Y. Lee, " Effect of microbubble generator operating parameters on oxygen transfer efficiency in water", Desalination and water treatment, Vol.57, pp. 1-9, (2016). https://doi.org/10.1080/19443994.2016.1119929
  24. H. Ikeura, H. Takahashi, F. Kobayashi, M. Sato, "Effects of microbubble generation methods and dissolved oxygen concentrations on growth of Japanese mustard spinach in hydroponic culture". Journal of Horticultural Science and Biotechnology, Vol.93, pp. 1-8, (2017).