DOI QR코드

DOI QR Code

A Study on Pd-based Electrode prepared by using Electroless Plating Method

무전해도금법을 이용한 Pd 기반 전극·제조에 관한 연구

  • Hwang, In Hyuck (Department of Environmental Energy Engineering, Graduate school of Kyonggi University) ;
  • Lee, Dong Yoon (Department of Environmental Energy Systems Engineering, Kyonggi University) ;
  • Kim, Sung Su (Department of Environmental Energy Systems Engineering, Kyonggi University)
  • 황인혁 (경기대학교 일반대학원 환경에너지공학과) ;
  • 이동윤 (경기대학교 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Received : 2018.12.10
  • Accepted : 2018.12.25
  • Published : 2018.12.31

Abstract

In this study, Ti-mesh based electrodes were fabricated for the application of anode to the electrolysis process for wastewater treatment using Pd electroless plating method. The removal performance of the prepared Pd / Ti-mesh electrode was evaluated as representative dye RO16, and the durability and performance were maximized by varying the electrode manufacturing conditions. As a result, it was confirmed that the coating condition had no significant effect on the performance, and that the heat treatment process greatly affected the performance and the durability was improved. In addition, we tried to maximize performance and durability by complexing Ir, Ru, and Ta. However, as the thickness of the layer increased due to the limitation of the coating method, the resistance increased and the performance decreased accordingly.

본 연구에서는 무전해도금법을 이용한 Pd coating 기술을 활용하여 폐수처리를 위한 전기분해 공정에 anode로의 적용을 목적으로 Ti-mesh 기반 전극을 제조하였다. 제조된 Pd/Ti-mesh 전극은 염색염료인 RO16을 대표로 그 제거성능을 평가하였으며, 전극 제조조건을 다르게 하여 내구성 및 성능을 극대화한 결과 coating 조건은 성능에 크게 영향을 미치지 않았지만, Pd coating 후 열처리 공정의 경우 성능에 크게 영향을 미쳤으며, 내구성 역시 증진됨을 확인하였다. 또한 Ir, Ru, Ta을 복합화하여 성능 및 내구성을 극대화하고자 하였으나, coating법의 한계로 layer의 thickness가 증가함에 따라 저항이 커졌으며, 이에 따라 성능이 감소함을 확인하였다.

Keywords

HGOHBI_2018_v35n4_1338_f0001.png 이미지

Fig. 1. Manufacturing step of palladium electroless plating.

HGOHBI_2018_v35n4_1338_f0002.png 이미지

Fig. 2. Manufacturing step of Ir-Ru-Ta/Ti-mesh using brush coating.

HGOHBI_2018_v35n4_1338_f0003.png 이미지

Fig. 3. Schematic diagram of electro-chemical reactor.

HGOHBI_2018_v35n4_1338_f0004.png 이미지

Fig. 4. RO16 removal performance of DSA and Pd/Ti electrodes, capacity = 1 L, RO16 concentration = 10 ppm, electrolyte type and concentration = Na2SO4 0.07 mol/L, electrode size = 20 × 40 mm, distance between the electrodes = 55 mm, current density = 0.04 A/cm2, reaction time = 1 h, temperature = 21 ℃.

HGOHBI_2018_v35n4_1338_f0005.png 이미지

Fig. 5. Effect of temperature in Pd-plating conditions on performance of RO16 removal using Pd/Ti-mesh electrodes, A: 25 ℃, B: 55 ℃, C: 85 ℃, capacity = 1 L, RO16 concentration = 10 ppm, electrolyte type and concentration = Na2SO4 0.07 mol/L, electrode size = 20 × 40 mm, distance between the electrodes = 55 mm, current density = 0.04 A/cm2, reaction time = 1 h, temperature = 21 ℃.

HGOHBI_2018_v35n4_1338_f0006.png 이미지

Fig. 6. Effect of heat treatment on performance of RO16 removal using Pd/Ti-mesh electrodes, A: before heat treatment, B: after heat treatment, capacity = 1 L, RO16 concentration = 10 ppm, electrolyte type and concentration = Na2SO4 0.07 mol/L, electrode size = 20 × 40 mm, distance between the electrodes = 55 mm, current density = 0.04 A/cm2, reaction time = 1 h, temperature = 21 ℃.

HGOHBI_2018_v35n4_1338_f0007.png 이미지

Fig. 7. Effect of temperature in heat treatment conditions on performance of RO16 removal using Pd/Ti-mesh electrodes, capacity = 1 L, RO16 concentration = 10 ppm, electrolyte type and concentration = Na2SO4 0.07 mol/L, electrode size = 20 × 40 mm, distance between the electrodes = 55 mm, current density = 0.04 A/cm2, reaction time = 1 h, temperature = 21 ℃.

HGOHBI_2018_v35n4_1338_f0008.png 이미지

Fig. 8. Effect of Pd and Ir-Ru-Ta layer of RO16 removal, capacity = 1 L, RO16 concentration = 10 ppm, electrolyte type and concentration = Na2SO4 0.07 mol/L, electrode size = 20 × 40 mm, distance between the electrodes = 55 mm, current density = 0.04 A/cm2, reaction time = 1 h, temperature = 21 ℃.

HGOHBI_2018_v35n4_1338_f0009.png 이미지

Fig. 9. Effect of layer in coating conditions on performance of RO16 removal using A, B, C, and DSA electrodes, A: Pd/Ir-Ru-Ta/Ti-mesh, B: Ir-Ru-Ta/Pd/Ti-mesh, C: Ir-Ru-Ta/Pd/Ir-Ru-Ta/Ti-mesh, capacity = 1 L, RO16 concentration = 10 ppm, electrolyte type and concentration = Na2SO4 0.07 mol/L, electrode size = 20 × 40 mm, distance between the electrodes = 55 mm, current density = 0.04 A/cm2, reaction time = 1 h, temperature = 21 ℃.

HGOHBI_2018_v35n4_1338_f0010.png 이미지

Fig. 10. Longevity test of Pd/Ir-Ru-Ta/Ti anode, capacity = 1 L, RO16 concentration = 10 ppm, electrolyte type and concentration = Na2SO4 0.07 mol/L, electrode size = 20 × 40 mm, distance between the electrodes = 55 mm, current density = 0.04 A/cm2, reaction time = 10 h, temperature = 21 ℃.

Table 1. Conditions of palladium electroless plating.

HGOHBI_2018_v35n4_1338_t0001.png 이미지

Table 2. Conditions of Ir-Ru-Ta coating solution

HGOHBI_2018_v35n4_1338_t0002.png 이미지

Table 3. Conditions of electrolysis process

HGOHBI_2018_v35n4_1338_t0003.png 이미지

Table 4. RO16 UV absorption analysis conditions

HGOHBI_2018_v35n4_1338_t0004.png 이미지

Table 5. IC/ICP result of electrolyzed RO16 wastewater using DSA and Pd/Ti-mesh electrodes

HGOHBI_2018_v35n4_1338_t0005.png 이미지

Table 6. IC/ICP result of electrolyzed RO16 wastewater using DSA and Pd/Ti-mesh electrode in various plaiting temperature conditions

HGOHBI_2018_v35n4_1338_t0006.png 이미지

Table 7. IC/ICP result of electrolyzed RO16 wastewater using Pd/Ti-mesh electrode in various heat treatment temperature conditions

HGOHBI_2018_v35n4_1338_t0007.png 이미지

References

  1. I. T. Yeom, "Study on appropriate treatment & management of the public sewage treatment works entering the industrial wastewater", National institute of Environmental, (2011).
  2. S. H. Lee, J. H. Kim, "The study of mutagenicity and organic pollutant in Nakdong river water basin", J. Korean Soc. Environ. Eng., Vol.19, No.6 pp. 785-798, (1997).
  3. M. C. Lee, H. Y. Lee, J. J. Lim, D. A. Ryu, "Minimization of specific water pollutants and improvement of management system", Proceedings of Korea Society For Regulatory Studies, (2015).
  4. M. Luan, G. Jing, Y. Piao, D. Liu, L. Jin, "Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation", Arabian J. Chem., Vol.10, No.1, pp. 769-776, (2017). https://doi.org/10.1016/j.arabjc.2016.11.005
  5. J. Levec, A. Pinter, "Catalytic wet-air oxidation processes: A review", Catal. Today, Vol.124 No.3-4, pp. 172-184, (2007). https://doi.org/10.1016/j.cattod.2007.03.035
  6. G. Chen, "Electrochemical technologies in wastewater treatment", Sep. Purif. Technol., Vol.38, No.1, pp. 11-41, (2004). https://doi.org/10.1016/j.seppur.2003.10.006
  7. M. Zhou, Q. Dai, L. Lei, C. Ma, D. Wang, "Long Life Modified Lead Dioxide Anode for Organic Wastewater Treatment: Electrochemical Characteristics and Degradation Mechanism", Environ. Sci. Technol., Vol.39 No.1, pp. 363-370, (2005). https://doi.org/10.1021/es049313a
  8. C. Feng, N. Sugiure, S. Shimada, T. Maekawa, "Development of a high performance electrochemical wastewater treatment system", J. Hazard. Mater., Vol.103, No.1-2, pp. 65-78, (2003). https://doi.org/10.1016/S0304-3894(03)00222-X
  9. A. M. Polcaro, S. Palmas, "Electrochemical oxidation of chlorophenols", Ind. Eng. Chem. Res., Vol.36, pp. 1791-1798, (1997). https://doi.org/10.1021/ie960557g
  10. G. Chen, "Electrochemical technologies in wastewater treatment", Sep. Purif. Technol., Vol.38, pp. 11-41, (2004). https://doi.org/10.1016/j.seppur.2003.10.006
  11. M. Panizza, A. Barbucci, R. Ricotti, G. Cerisola, "Electrochemical degradation of methylene blue", Sep. Purif. Technol., Vol.54, pp. 382-387, (2007). https://doi.org/10.1016/j.seppur.2006.10.010
  12. S. H. Park, I. S. Kim, "Disinfection of harmful organisms for sea water using electrolytic treatment system", Kor. Inst. Navig. Port Res., Vol.28, No,10, pp. 995-960, (2004).
  13. B. I. Choi, W. K. Yeo, J. S. Lee, "Influences of plating conditions on magnetic properties of Co-P thin flims by electroless plating", J. Korean Inst. Surf. Eng., Vol.9, No.1, pp.3-12, (1986).
  14. S. H. M. Anijdan, M. Sabzi, M. R. Zadeh, M. Farzam, "The effect of electroless bath parameters and heat treatment on the properties of Ni-P and Ni-P-Cu composite coatings", Mater. Res., Vol.21, No.2, pp. 1-9, (2018).
  15. X. Shu, Y. Wang, X. Lu, C. Liu, W. Gao, "Parameter optimization for electroless Ni-W-P coating", Surf. Coat. Technol., Vol.276, pp. 195-201, (2015). https://doi.org/10.1016/j.surfcoat.2015.06.068
  16. R. J. Liu, P. A. Crozier, C. M. Smith, D. A. Hucul, J. Blackson, G. Salaita, "Metal sintering mechanisms and regeneration of palladium/alumina hydrogenation catalysts", Appl. Catal. A, Vol.282, No.1-2, pp. 111-121, (2005). https://doi.org/10.1016/j.apcata.2004.12.015
  17. N. I. Baklanova, V. V. Lozanov, N. B. Morozova, A. T. Titov, "The effect of heat treatment on the tensile strength of the iridium-coated carbon fiber", Thin Solid Films, Vol.578, pp. 148-155, (2015). https://doi.org/10.1016/j.tsf.2015.02.042
  18. D. H. Moon, S. M. Lee, J. Y. Ahn, D. D. Nguyen, S. S. Kim, S. W. Chang, "New Ni-based quaternary disk-shaped catalysts for low-temperature CO2 methanation: Fabrication, characterization, and performance", J. Environ. Manage., Vol.218, pp. 88-94, (2018). https://doi.org/10.1016/j.jenvman.2018.04.034
  19. C. M. Choi, Development of Tantalum Doped SnO2 Anodes for Electrochemical Water Treatment, Kyungpook national university, Daegu (2016).