DOI QR코드

DOI QR Code

Reduced Graphene Oxide / Polyaniline Composite Material for Supercapacitor Electrode

환원된 그래핀 옥사이드/폴리아닐린 복합재료 기반의 슈퍼커패시터용 전극 제조

  • Jeong, Hyeon Taek (Division of Energy and Environmental Engineering, Daejin University) ;
  • Kim, Se Hyun (Division of Energy and Environmental Engineering, Daejin University) ;
  • Ahn, Won Jun (Division of Energy and Environmental Engineering, Daejin University) ;
  • Choi, Jae Yong (Division of Energy and Environmental Engineering, Daejin University) ;
  • Park, Hyeon Young (Division of Energy and Environmental Engineering, Daejin University) ;
  • Kim, Chang Hyun (Division of Energy and Environmental Engineering, Daejin University) ;
  • Kim, Yong Ryeol (Division of Energy and Environmental Engineering, Daejin University)
  • 정현택 (대진대학교 에너지환경공학부) ;
  • 김세현 (대진대학교 에너지환경공학부) ;
  • 안원준 (대진대학교 에너지환경공학부) ;
  • 최재용 (대진대학교 에너지환경공학부) ;
  • 박현영 (대진대학교 에너지환경공학부) ;
  • 김창현 (대진대학교 에너지환경공학부) ;
  • 김용렬 (대진대학교 에너지환경공학부)
  • Received : 2018.11.30
  • Accepted : 2018.12.26
  • Published : 2018.12.31

Abstract

In this study, reduced graphene oxide/polyaniline composite was fabricated tomaximize their advantages with electrochemical performances and use as a electrodematerial for supercapcaitor. Polyaniline as an electrode material was synthesized bychemical polymerization of aniline monomer and reduced graphene oxide wasintroduced to prepare composite with polyaniline without any pre-treatment. Thereduced graphene oxide, polyaniline and their composite electrodes were fabricatedon gold coated PET(polyethylene terephthalate) substrate through spray coatingmethod which can also apply to industrial scale. we have also prepared reducedgraphene oxide and polyaniline single material electrode to compare theirelectrochemical properties with reduced graphene oxide/polyaniline composite electrode. We have analyzed and compared electrochemical properties of eachelectrodes by using cyclic voltammetry(CV), galvanostaticcharge-discharge(GCD) and electrochemical impedancespectroscopy(EIS) at same condition. As a result, reduced graphene oxide /polyaniline composite electrode showed higher capacitance value more thanpolyaniline and reduced graphene oxide electrode, respectively. Internal resistanceof reduce graphene oxide/polyaniline composite electrode was 24% and 58% lessthan polaniline and reduced graphene oxide electrode respectively. These resultsconsidered that reduced graphene oxide/polyaniline composite electrode has potential ability and enable to apply flexible energy storage and wearable devices.

본 연구에서는 탄소 나노재료 중 환원된 그래핀 옥사이드와 전도성 고분자중 폴리아닐린을 복합화 하여 슈퍼커패시터용 전극을 제조하였으며, 각각의 전극 재료가 가지는 단점을 서로 보완하고 장점을 극대화시킴으로써 전극의 전기화학적 특성을 크게 향상 시킬 수 있었다. 전극 물질에 사용된 폴리아닐린은 아닐린 단량체를 화학 중합법으로 제조하였고, 환원된 그래핀 옥사이드는 별도의 전 처리 과정 없이 사용하였으며, DMF(N,N-dimethyl formamide)를 용매로 도입하여 분산용액을 제조하였다. 분산용액은 금이 코팅된PET(Polyethylene terephthalate) 기판위에 산업적 스케일로 적용이 가능한 스프레이 코팅 방법을 이용하여 전극으로 제조하였다. 환원된 그래핀 옥사이드/폴리아닐린 복합재료를 기반으로 제조된 전극의 전기화학적 특성을 비교하기 위하여 환원된 그래핀 옥사이드와 폴리아닐린 단일 전극을 제조하였으며, 동일한 조건하에서 순환전압전류법, 임피던스 분광법, 정전류 충 방전법을 통하여 각각의 전극이 나타내는 전기화학적 특성을 비교 분석 하였다. 그 결과로, 환원된 그래핀 옥사이드/폴리아닐린 복합재료를 기반으로 제조된 전극은 폴리아닐린, 환원된 그래핀 옥사 단일 전극에 비하여 전기 용량 값이 높게 나타났으며, 전해질 계면과의 내부 저항은 폴리아닐린, 환원된 그래핀 옥사이드 단일 전극에 비하여 각각 24 %, 58 % 감소하는 결과를 나타내었다. 이러한 결과로 미루어보아 본 연구를 통하여 제조된 환원된 그래핀 옥사이드/폴리아닐린 복합재료 기반의 전극은 유연성 에너지 저장 매체나 웨어러블 전자기기에 적용이 가능할 것으로 판단된다.

Keywords

HGOHBI_2018_v35n4_1088_f0001.png 이미지

Fig. 1. cyclic voltammetry curves of reduced graphene oxdie, polyanilin and reduced graphene oxide / polyainline composite electrode.

HGOHBI_2018_v35n4_1088_f0002.png 이미지

Fig. 2. cyclic voltammetry curves of reduced graphene oxide / polyanilne composite at 50mv, 100mv, 200mv scan rate.

HGOHBI_2018_v35n4_1088_f0003.png 이미지

Fig. 3. galvano charge-discharge curves of reduced graphene oxide, polyaniline, reduced graphene oxide / polyaniline composite at 1A/g.

HGOHBI_2018_v35n4_1088_f0004.png 이미지

Fig. 4. Specific capacitance of reduced graphene oxide, polyaniline, reduced graphene oxide / polyaniline composite.

HGOHBI_2018_v35n4_1088_f0005.png 이미지

Fig. 5. Nyquist plot of reduced graphene oxide, polyainline, reduced graphene oxide / polyaniline composite.

References

  1. K. Z. Htut, M. Kim, E. Lee, S. H. Baeck, S. E. Shim, "Biodegradable polymer-modified graphene/polyaniline electrodes for supercapacitors", Synthetic Metals, Vol. 227, pp. 61-70(2017). https://doi.org/10.1016/j.synthmet.2017.03.005
  2. J. Chen, K. Fang, Q. Chen, J. Xu, C-P. Wong, "Integrated paper electrodes derived from cotton stalks for high-performanceflexible supercapacitors", Nano Energy, Vol. 53, pp. 337-344(2018). https://doi.org/10.1016/j.nanoen.2018.08.056
  3. X. Liu, M. N. Marlow, S. J. Cooper, B. Song, X. Chen, N.P. Brandon, B. Wu, "Flexible all-fiber electrospun supercapacitor", Journal of Power Sources, Vol. 384, pp. 264-269(2018). https://doi.org/10.1016/j.jpowsour.2018.02.081
  4. P. Sivakumar, M. Jana, M. Kota, M. G. Jung, A. Gedanken, H. S. Park, "Controllable synthesis of nanohorn-like architectured cobalt oxide for hybrid supercapacitor application", Journal of Power Sources, Vol. 402, pp. 147-156(2018). https://doi.org/10.1016/j.jpowsour.2018.09.026
  5. G. A. Snook, P. Kao, A. S. Best, "Conducting-polymer-based supercapacitor devices and electrodes", Journal of Power Sources, Vol. 196, pp. 1-12(2011). https://doi.org/10.1016/j.jpowsour.2010.06.084
  6. A. Balducci, R. Dugas, P.L. Taberna, P. Simon, D. Plee, M. Mastragostino, S. Passerini, "High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte", Journal of Power Sources Vol. 165, pp. 922-927(2007). https://doi.org/10.1016/j.jpowsour.2006.12.048
  7. J. Zhao, Q. Li, L. Han, R. Liu, "Spherical Mesocrystals from Self-assembly of Folic Acid and Nickel(II) Ion for High-performance Supercapacitors", Journal of Colloid and Interface Science, Vol. 538, pp. 142-148(2018).
  8. F. Zheng, Y. Li, X. Wang, "Study on effects of applied current and voltage on the ageing of supercapacitors", Electrochimica Acta, Vol. 276, pp. 343-351(2018). https://doi.org/10.1016/j.electacta.2018.04.153
  9. A. Tahri, H. El Fadil, F.Z. Belhaj, K. Gaouzi, A. Rachid, F. Giri, F.Z. Chaoui, "Management of fuel cell power and supercapacitor state-of-charge forelectric vehicles", Electric Power Systems Research, Vol. 160 pp. 89-98(2018). https://doi.org/10.1016/j.epsr.2018.02.003
  10. S. Korkmaz, F. Meydaneri Tezel, I.A. Kariper, "Synthesis and Characterization of $GO/V_2O_5$ Thin Film Supercapacitor", Synthetic Metals, Vol. 242, pp. 37-48(2018). https://doi.org/10.1016/j.synthmet.2018.05.002
  11. G. Xiong, C. Meng, R. G. Reifenberger, P. P. Irazoqui and T. S. Fisher, "A review of graphene based electrochemical microsupercapacitor", Electroanalysis, Vol. 26, pp. 30-51(2014) https://doi.org/10.1002/elan.201300238
  12. D. W. Wang, F. Li, M. Liu, G. Q. Lu and H. M. Cheng, "3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage", Angew. Chem., Int. Ed., Vol. 47, pp. 373-376(2008) https://doi.org/10.1002/anie.200702721
  13. C. Peng, S. Zhang, D. Jewell and G. Z. Chen,"Carbon nanotube and conducting polymer composites for supercapacitors", Prog. Nat. Sci, Vol. 18, pp. 777-788(2008). https://doi.org/10.1016/j.pnsc.2008.03.002
  14. M. Kim, Y. Kim, K. M. Lee, S. Y. Jeong, E. Lee, S. H. Baeck, S. E. Shim, "Electrochemical improvement due to alignment of carbon nanofibers fabricated by electrospinning as an electrode for supercapacitor", Carbon, Vol. 99, pp. 607-618(2016). https://doi.org/10.1016/j.carbon.2015.12.068
  15. X. Jin, H. Wang, Y. Liu, H. Wang, W. Wang, T. Lin, "Hydrogen-bonding power interfacial load transfer of carbon fabric/polypyrrole composite pseudosupercapacitor electrode with improved electrochemical stability", Applied Surface Science, Vol. 470, pp. 783-791(2018).
  16. Y. Zhou, X. Zou, Z. Zhao, B. Xiang, Y. Zhang, "CoO/rGO composite prepared by a facile direct-flame approach for highpower supercapacitors", Ceramics International, Vol. 44, pp. 16900-16907(2018). https://doi.org/10.1016/j.ceramint.2018.06.128
  17. S. Chen, X. Zhang, B. Liu, H. Shi, F. Chen, C. Hu, J. Chen, "Characterisations of carbon-fenced conductive silver nanowires-supported hierarchical polyaniline nanowires", Electrochimica Acta, Vol. 292, pp. 435-445(2018) https://doi.org/10.1016/j.electacta.2018.09.143
  18. A. Torvi, S. Naik, M. Kariduraganavar, "Development of supercapacitor systems based on binary and ternary nanocomposites using chitosan, graphene and polyaniline", Chemical Data Collections, Vol. 18, pp. 459-471(2018).
  19. R. da S. Oliveira, M. A. Bizeto, F. F. Camilo, "Production of self-supported conductive films based on cellulose, polyaniline and silver nanoparticles", Carbohydrate Polymers, Vol. 199, pp. 84-91(2018). https://doi.org/10.1016/j.carbpol.2018.06.049
  20. M. A. Bavio, G., G. G. Acosta, T. Kessler, "'Synthesis and characterization of polyaniline and polyaniline-carbon nanotubes nanostructures for electrochemical supercapacitors", Journal of Power Sources, Vol. 245, pp. 475-481(2014). https://doi.org/10.1016/j.jpowsour.2013.06.119
  21. Zh. A. Boeva and V. G. Sergeyev, "Polyaniline: Synthesis, Properties, and Application", Polymer Science Series C, Vol. 56, pp. 144-153(2014). https://doi.org/10.1134/S1811238214010032
  22. A. Eftekhari, Lei Li, Yang Yang, "Polyaniline supercapacitors", Journal of Power Sources, Vol. 347, pp. 86-107 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.054
  23. J. Dominic, T. David, A. Vanaja, G. Muralidharan, N. Maheswari, K.K. Satheesh Kumara, "Supercapacitor performance study of lithium chloride doped polyaniline", Applied Surface Science, Vol. 460, pp. 40-47(2018). https://doi.org/10.1016/j.apsusc.2018.02.164
  24. J. Park, Y. S. Cho, S. J. Sung, M. Byeon, S. J. Yang, "Characteristics tuning of graphene-oxide-based-graphene to various end-uses", Energy Storage Materials, Vol. 14, pp. 8-21(2018). https://doi.org/10.1016/j.ensm.2018.02.013
  25. A. Hosseinzadeh, S. Bidmeshkipour, Y. Abdi, E. Arzi, S. Mohajerzadeh, "Graphene based strain", Applied Surface Science, Vol. 448, pp. 71-77(2018). https://doi.org/10.1016/j.apsusc.2018.04.099
  26. T. S. Tran, N. K. Dutta, N. R. Choudhury, "Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications", Advances in Colloid and Interface Science, Vol. 261, pp. 41-61(2018). https://doi.org/10.1016/j.cis.2018.09.003
  27. D. G. Papageorgiou, I. A. Kinloch, R. J. Young, "Mechanical properties of graphene and graphene-based nanocomposites", Progress in Materials, Vol. 90, pp. 75-127(2017). https://doi.org/10.1016/j.pmatsci.2017.07.004
  28. B Kavitha, K Siva Kumar& N Narsimlu, "Synthesis and characterization of polyaniline nano-fibers", Indian Journal of Pure & Applied Physics, Vol. 51, pp. 207-209(2013).
  29. N. Chen, Y. Ren, P. Kong, L. Tan, H. Feng, Y. Luo, "In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors", Applied Surface Science, Vol. 392, pp. 71-79(2017). https://doi.org/10.1016/j.apsusc.2016.07.168
  30. Y. Uchida, E. Katelhon, R. G. Compton, "Cyclic voltammetry with non-triangular waveforms: Electrochemically reversible systems", Journal of Electroanalytical Chemistry, Vol. 801, pp. 381-387(2017). https://doi.org/10.1016/j.jelechem.2017.08.008
  31. V Climent and JM Feliu, "Cyclic Voltammetry", Elsevier Inc, spain, Vol. 10, pp. 1-28(2015).
  32. H. Mi, X. Zhang, S. Yang, X. Ye, J. Luo, "Polyaniline nanofibers as the electrode material for supercapacitors", Materials Chemistry and Physics, Vol. 112, pp. 127-131(2008). https://doi.org/10.1016/j.matchemphys.2008.05.022
  33. S-J Bao, C. MingLi, C.-X. Guo, Y. Qiao, "Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors", Journal of Power Sources, Vol. 180, pp. 676-681(2008). https://doi.org/10.1016/j.jpowsour.2008.01.085
  34. W. Wu, Y. Li, L. Yang, Y. Ma, D. Pan, Y. Li, "A Facile One-pot Preparation of Dialdehyde Starch Reduced Graphene Oxide/Polyaniline Composite for Supercapacitors", Electrochimica acta, Vol. 139, pp. 117-126(2014). https://doi.org/10.1016/j.electacta.2014.06.166