DOI QR코드

DOI QR Code

Isolation of Temperature-sensitive Mutant Escherichia coli YrdC Involved in Universal t6 A tRNA Synthesis

대장균에서 t6 A tRNA의 생합성에 관여하는 필수 단백질 YrdC의 온도 민감형 돌연변이 분리

  • Hwang, Jihwan (Department of Microbiology, Pusan National University)
  • Received : 2017.11.21
  • Accepted : 2018.02.07
  • Published : 2018.02.28

Abstract

The YrdC superfamily is a group of proteins that are highly conserved in almost all organisms sequenced so far. YrdC in Escherichia coli was suggested to be involved in ribosome biogenesis, translation termination, cold adaptation, and threonylcarbamoyl adenosine formation in tRNA. In this study, to unambiguously demonstrate that yrdC is essential in E. coli, we constructed two yrdC mutant strains of E. coli and examined their phenotypes. In the temperature-sensitive yrdC mutant strain, cell growth stopped almost immediately under nonpermissive conditions and it appeared to accumulate 16S ribosomal RNA precursors without significant accumulation of 30S ribosomal subunits. We also cloned yeast and human homologs and demonstrated that they complement the E. coli yrdC-deletion strain. By mutational study, we demonstrated that the concave surface in the middle of the YrdC protein plays an important role in E. coli, yeast, and human versions. By comparison of two yrdC-deletion strains, we also unambiguously demonstrated that yrdC is essential for viability in E. coli and that the functions of its yeast and human homologs overlap with that of E. coli YrdC.

YrdC 수퍼 패밀리는 지금까지 유전 서열이 알려진 거의 모든 생명체에서 매우 잘 보존 된 단백질 중 하나이다. Escherichia coli의 YrdC는 리보솜 생합성, 번역 종결, 저온 적응, tRNA에서 threonylcarbamoyl adenosine의 형성에 관여하는 것으로 제안되었다. 이 연구에서, yrdC 유전자가 대장균에서 필수적이라는 것을 명확하게 증명하기 위해, 대장균에서 두 개의 yrdC 결손 돌연변이 균주를 만들고 그 표현형을 조사하였다. 특히 온도에 민감한 yrdC 돌연변이 균주는 $42^{\circ}C$ 온도 조건 하에서 거의 즉시 세포 성장을 멈추었으며 30S 리보솜 단위체의 상당한 축적없이 16S rRNA 전구체를 축적하는 것으로 나타났다. 또한 효모와 인간의 yrdC 유전자를 클로닝하여 이들이 대장균 yrdC 결손 균주의 성장억제를 회복 할 수 있다는 것을 입증하였다. 이밖에도 여러 돌연변이 연구에 의해, 우리는 YrdC 단백질의 중간에 위치한 오목한 표면이 대장균, 효모 및 인간의 YrdC 단백질에서 중요한 역할을 한다는 것을 보여 주었다. 따라서, 두 개의 yrdC 결손 균주를 비교하여, yrdC 유전자가 대장균에서 생존력에 필수적이며, 효모 및 인간 동족체의 기능이 대장균 YrdC의 기능과 중복된다는 것을 규명하였고, 이 균주를 이용하여 아직까지 밝혀지지 않은 대장균 YrdC 단백질이 tRNA 형성에 관여한다는 것을 증명할 수 있는 토대를 제공한다는데 의의가 있다.

Keywords

References

  1. Armstrong, K. A., Acosta, R., Ledner, E., Machida, Y., Pancotto, M., McCormick, M., Ohtsubo, H. and Ohtsubo, E. 1984. A $37{\time}10^3$ molecular weight plasmid-encoded protein is required for replication and copy number control in the plasmid pSC101 and its temperature-sensitive derivative pHS1. J. Mol. Biol. 175, 331-348. https://doi.org/10.1016/0022-2836(84)90352-8
  2. Carmel, D., Dahlstrom, K. M., Holmstrom, M., Allahverdiyeva, Y., Battchikova, N., Aro, E. M., Salminen, T. A. and Mulo, P. 2013. Structural model, physiology and regulation of Slr0006 in Synechocystis PCC 6803. Arch. Microbiol. 195, 727-736. https://doi.org/10.1007/s00203-013-0924-4
  3. Chen, J., Ji, C., Gu, S., Zhao, E., Dai, J., Huang, L., Qian, J., Ying, K., Xie, Y. and Mao, Y. 2003. Isolation and identification of a novel cDNA that encodes human yrdC protein. J. Hum. Genet. 48, 164-169. https://doi.org/10.1007/s10038-002-0001-3
  4. Cohen, S. N. and Chang, A. C. 1977. Revised interpretation of the origin of the pSC101 plasmid. J. Bacteriol. 132, 734-737.
  5. Comartin, D. J. and Brown, E. D. 2006. Non-ribosomal factors in ribosome subunit assembly are emerging targets for new antibacterial drugs. Curr. Opin. Pharmacol. 6, 453-458. https://doi.org/10.1016/j.coph.2006.05.005
  6. Datsenko, K. A. and Wanner, B. L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA. 97, 6640-6645. https://doi.org/10.1073/pnas.120163297
  7. Deutsch, C., El Yacoubi, B., de Crecy-Lagard, V. and Iwata-Reuyl, D. 2012. Biosynthesis of threonylcarbamoyl adenosine (t6A), a universal tRNA nucleoside. J. Biol. Chem. 287, 13666-13673. https://doi.org/10.1074/jbc.M112.344028
  8. El Yacoubi, B., Lyons, B., Cruz, Y., Reddy, R., Nordin, B., Agnelli, F., Williamson, J. R., Schimmel, P., Swairjo, M. A. and de Crecy-Lagard, V. 2009. The universal YrdC/Sua5 family is required for the formation of threonylcarbamoyladenosine in tRNA. Nucleic Acids Res. 37, 2894-2909. https://doi.org/10.1093/nar/gkp152
  9. Fu, T. M., Liu, X., Li, L. and Su, X. D. 2010. The structure of the hypothetical protein smu.1377c from Streptococcus mutans suggests a role in tRNA modification. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66, 771-775. https://doi.org/10.1107/S1744309110018944
  10. Guzman, L. M., Belin, D., Carson, M. J. and Beckwith, J. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121-4130. https://doi.org/10.1128/jb.177.14.4121-4130.1995
  11. Hampsey, M., Na, J. and Pinto, I. 1991. Isolation and characterization of the Sua5 gene, which affects AUG initiation codon selection in Saccharomyces cerevisiae. FASEB J. 5, A808-A808.
  12. Hampsey, M., Na, J. G., Pinto, I., Ware, D. E. and Berroteran, R. W. 1991. Extragenic suppressors of a translation initiation defect in the cyc1 gene of Saccharomyces cerevisiae. Biochimie 73, 1445-1455. https://doi.org/10.1016/0300-9084(91)90177-3
  13. Harris, K. A., Jones, V., Bilbille, Y., Swairjo, M. A. and Agris, P. F. 2011. YrdC exhibits properties expected of a subunit for a tRNA threonylcarbamoyl transferase. RNA 17, 1678-1687. https://doi.org/10.1261/rna.2592411
  14. Hasunuma, K. and Sekiguchi, M. 1979. Effect of DNA mutations on the replication of plasmid pSC101 in Escherichia coli K-12. J. Bacteriol. 137, 1095-1099.
  15. Hwang, J. and Inouye, M. 2006. The tandem GTPase, Der, is essential for the biogenesis of 50S ribosomal subunits in Escherichia coli. Mol. Microbiol. 61, 1660-1672. https://doi.org/10.1111/j.1365-2958.2006.05348.x
  16. Jiang, W., Prokopenko, O., Wong, L., Inouye, M. and Mirochnitchenko, O. 2005. IRIP, a new ischemia/reperfusion-inducible protein that participates in the regulation of transporter activity. Mol. Cell Biol. 25, 6496-6508. https://doi.org/10.1128/MCB.25.15.6496-6508.2005
  17. Kaczanowska, M. and Ryden-Aulin, M. 2004. Temperature sensitivity caused by mutant release factor 1 is suppressed by mutations that affect 16S rRNA maturation. J. Bacteriol. 186, 3046-3055. https://doi.org/10.1128/JB.186.10.3046-3055.2004
  18. Kaczanowska, M. and Ryden-Aulin, M. 2005. The YrdC protein-a putative ribosome maturation factor. Biochim. Biophys. Acta 1727, 87-96. https://doi.org/10.1016/j.bbaexp.2004.11.010
  19. Kuratani, M., Kasai, T., Akasaka, R., Higashijima, K., Terada, T., Kigawa, T., Shinkai, A., Bessho, Y. and Yokoyama, S. 2011. Crystal structure of Sulfolobus tokodaii Sua5 complexed with L-threonine and AMPPNP. Proteins 79, 2065-2075. https://doi.org/10.1002/prot.23026
  20. Lerner, C. G., Kobayashi, T. and Inouye, M. 1990. Isolation of subtilisin pro-sequence mutations that affect formation of active protease by localized random polymerase chain reaction mutagenesis. J. Biol. Chem. 265, 20085-20086.
  21. Lin, C. A., Ellis, S. R. and True, H. L. 2010. The Sua5 protein is essential for normal translational regulation in yeast. Mol. Cell Biol. 30, 354-363. https://doi.org/10.1128/MCB.00754-09
  22. Meng, F. L., Chen, X. F., Hu, Y., Tang, H. B., Dang, W. and Zhou, J. Q. 2010. Sua5p is required for telomere recombination in Saccharomyces cerevisiae. Cell Res. 20, 495-498. https://doi.org/10.1038/cr.2010.34
  23. Meng, F. L., Hu, Y., Shen, N., Tong, X. J., Wang, J., Ding, J. and Zhou, J. Q. 2009. Sua5p a single-stranded telomeric DNA-binding protein facilitates telomere replication. EMBO J. 28, 1466-1478. https://doi.org/10.1038/emboj.2009.92
  24. Miller, J. H. 1992. A short course in bacterial genetics : a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  25. Na, J. G., Pinto, I. and Hampsey, M. 1992. Isolation and characterization of SUA5, a novel gene required for normal growth in Saccharomyces cerevisiae. Genetics 131, 791-801.
  26. Ryden, S. M. and Isaksson, L. A. 1984. A temperature-sensitive mutant of Escherichia coli that shows enhanced misreading of UAG/A and increased efficiency for some tRNA nonsense suppressors. Mol. Gen. Genet. 193, 38-45. https://doi.org/10.1007/BF00327411
  27. Spee, J. H., de Vos, W. M. and Kuipers, O. P. 1993. Efficient random mutagenesis method with adjustable mutation frequency by use of PCR and dITP. Nucleic Acids Res. 21, 777-778. https://doi.org/10.1093/nar/21.3.777
  28. Teplova, M., Tereshko, V., Sanishvili, R., Joachimiak, A., Bushueva, T., Anderson, W. F. and Egli, M. 2000. The structure of the yrdC gene product from Escherichia coli reveals a new fold and suggests a role in RNA binding. Protein Sci. 9, 2557-2566. https://doi.org/10.1110/ps.9.12.2557
  29. Wan, L. C., Mao, D. Y., Neculai, D., Strecker, J., Chiovitti, D., Kurinov, I., Poda, G., Thevakumaran, N., Yuan, F., Szilard, R. K., Lissina, E., Nislow, C., Caudy, A. A., Durocher, D. and Sicheri, F. 2013. Reconstitution and characterization of eukaryotic N6-threonylcarbamoylation of tRNA using a minimal enzyme system. Nucleic Acids Res. 41, 6332-6346. https://doi.org/10.1093/nar/gkt322
  30. Zhang, W., Collinet, B., Perrochia, L., Durand, D. and van Tilbeurgh, H. 2015. The ATP-mediated formation of the YgjD-YeaZ-YjeE complex is required for the biosynthesis of tRNA t6A in Escherichia coli. Nucleic Acids Res. 43, 1804-1817. https://doi.org/10.1093/nar/gku1397