References
-
Armstrong, K. A., Acosta, R., Ledner, E., Machida, Y., Pancotto, M., McCormick, M., Ohtsubo, H. and Ohtsubo, E. 1984. A
$37{\time}10^3$ molecular weight plasmid-encoded protein is required for replication and copy number control in the plasmid pSC101 and its temperature-sensitive derivative pHS1. J. Mol. Biol. 175, 331-348. https://doi.org/10.1016/0022-2836(84)90352-8 - Carmel, D., Dahlstrom, K. M., Holmstrom, M., Allahverdiyeva, Y., Battchikova, N., Aro, E. M., Salminen, T. A. and Mulo, P. 2013. Structural model, physiology and regulation of Slr0006 in Synechocystis PCC 6803. Arch. Microbiol. 195, 727-736. https://doi.org/10.1007/s00203-013-0924-4
- Chen, J., Ji, C., Gu, S., Zhao, E., Dai, J., Huang, L., Qian, J., Ying, K., Xie, Y. and Mao, Y. 2003. Isolation and identification of a novel cDNA that encodes human yrdC protein. J. Hum. Genet. 48, 164-169. https://doi.org/10.1007/s10038-002-0001-3
- Cohen, S. N. and Chang, A. C. 1977. Revised interpretation of the origin of the pSC101 plasmid. J. Bacteriol. 132, 734-737.
- Comartin, D. J. and Brown, E. D. 2006. Non-ribosomal factors in ribosome subunit assembly are emerging targets for new antibacterial drugs. Curr. Opin. Pharmacol. 6, 453-458. https://doi.org/10.1016/j.coph.2006.05.005
- Datsenko, K. A. and Wanner, B. L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA. 97, 6640-6645. https://doi.org/10.1073/pnas.120163297
- Deutsch, C., El Yacoubi, B., de Crecy-Lagard, V. and Iwata-Reuyl, D. 2012. Biosynthesis of threonylcarbamoyl adenosine (t6A), a universal tRNA nucleoside. J. Biol. Chem. 287, 13666-13673. https://doi.org/10.1074/jbc.M112.344028
- El Yacoubi, B., Lyons, B., Cruz, Y., Reddy, R., Nordin, B., Agnelli, F., Williamson, J. R., Schimmel, P., Swairjo, M. A. and de Crecy-Lagard, V. 2009. The universal YrdC/Sua5 family is required for the formation of threonylcarbamoyladenosine in tRNA. Nucleic Acids Res. 37, 2894-2909. https://doi.org/10.1093/nar/gkp152
- Fu, T. M., Liu, X., Li, L. and Su, X. D. 2010. The structure of the hypothetical protein smu.1377c from Streptococcus mutans suggests a role in tRNA modification. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66, 771-775. https://doi.org/10.1107/S1744309110018944
- Guzman, L. M., Belin, D., Carson, M. J. and Beckwith, J. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121-4130. https://doi.org/10.1128/jb.177.14.4121-4130.1995
- Hampsey, M., Na, J. and Pinto, I. 1991. Isolation and characterization of the Sua5 gene, which affects AUG initiation codon selection in Saccharomyces cerevisiae. FASEB J. 5, A808-A808.
- Hampsey, M., Na, J. G., Pinto, I., Ware, D. E. and Berroteran, R. W. 1991. Extragenic suppressors of a translation initiation defect in the cyc1 gene of Saccharomyces cerevisiae. Biochimie 73, 1445-1455. https://doi.org/10.1016/0300-9084(91)90177-3
- Harris, K. A., Jones, V., Bilbille, Y., Swairjo, M. A. and Agris, P. F. 2011. YrdC exhibits properties expected of a subunit for a tRNA threonylcarbamoyl transferase. RNA 17, 1678-1687. https://doi.org/10.1261/rna.2592411
- Hasunuma, K. and Sekiguchi, M. 1979. Effect of DNA mutations on the replication of plasmid pSC101 in Escherichia coli K-12. J. Bacteriol. 137, 1095-1099.
- Hwang, J. and Inouye, M. 2006. The tandem GTPase, Der, is essential for the biogenesis of 50S ribosomal subunits in Escherichia coli. Mol. Microbiol. 61, 1660-1672. https://doi.org/10.1111/j.1365-2958.2006.05348.x
- Jiang, W., Prokopenko, O., Wong, L., Inouye, M. and Mirochnitchenko, O. 2005. IRIP, a new ischemia/reperfusion-inducible protein that participates in the regulation of transporter activity. Mol. Cell Biol. 25, 6496-6508. https://doi.org/10.1128/MCB.25.15.6496-6508.2005
- Kaczanowska, M. and Ryden-Aulin, M. 2004. Temperature sensitivity caused by mutant release factor 1 is suppressed by mutations that affect 16S rRNA maturation. J. Bacteriol. 186, 3046-3055. https://doi.org/10.1128/JB.186.10.3046-3055.2004
- Kaczanowska, M. and Ryden-Aulin, M. 2005. The YrdC protein-a putative ribosome maturation factor. Biochim. Biophys. Acta 1727, 87-96. https://doi.org/10.1016/j.bbaexp.2004.11.010
- Kuratani, M., Kasai, T., Akasaka, R., Higashijima, K., Terada, T., Kigawa, T., Shinkai, A., Bessho, Y. and Yokoyama, S. 2011. Crystal structure of Sulfolobus tokodaii Sua5 complexed with L-threonine and AMPPNP. Proteins 79, 2065-2075. https://doi.org/10.1002/prot.23026
- Lerner, C. G., Kobayashi, T. and Inouye, M. 1990. Isolation of subtilisin pro-sequence mutations that affect formation of active protease by localized random polymerase chain reaction mutagenesis. J. Biol. Chem. 265, 20085-20086.
- Lin, C. A., Ellis, S. R. and True, H. L. 2010. The Sua5 protein is essential for normal translational regulation in yeast. Mol. Cell Biol. 30, 354-363. https://doi.org/10.1128/MCB.00754-09
- Meng, F. L., Chen, X. F., Hu, Y., Tang, H. B., Dang, W. and Zhou, J. Q. 2010. Sua5p is required for telomere recombination in Saccharomyces cerevisiae. Cell Res. 20, 495-498. https://doi.org/10.1038/cr.2010.34
- Meng, F. L., Hu, Y., Shen, N., Tong, X. J., Wang, J., Ding, J. and Zhou, J. Q. 2009. Sua5p a single-stranded telomeric DNA-binding protein facilitates telomere replication. EMBO J. 28, 1466-1478. https://doi.org/10.1038/emboj.2009.92
- Miller, J. H. 1992. A short course in bacterial genetics : a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
- Na, J. G., Pinto, I. and Hampsey, M. 1992. Isolation and characterization of SUA5, a novel gene required for normal growth in Saccharomyces cerevisiae. Genetics 131, 791-801.
- Ryden, S. M. and Isaksson, L. A. 1984. A temperature-sensitive mutant of Escherichia coli that shows enhanced misreading of UAG/A and increased efficiency for some tRNA nonsense suppressors. Mol. Gen. Genet. 193, 38-45. https://doi.org/10.1007/BF00327411
- Spee, J. H., de Vos, W. M. and Kuipers, O. P. 1993. Efficient random mutagenesis method with adjustable mutation frequency by use of PCR and dITP. Nucleic Acids Res. 21, 777-778. https://doi.org/10.1093/nar/21.3.777
- Teplova, M., Tereshko, V., Sanishvili, R., Joachimiak, A., Bushueva, T., Anderson, W. F. and Egli, M. 2000. The structure of the yrdC gene product from Escherichia coli reveals a new fold and suggests a role in RNA binding. Protein Sci. 9, 2557-2566. https://doi.org/10.1110/ps.9.12.2557
- Wan, L. C., Mao, D. Y., Neculai, D., Strecker, J., Chiovitti, D., Kurinov, I., Poda, G., Thevakumaran, N., Yuan, F., Szilard, R. K., Lissina, E., Nislow, C., Caudy, A. A., Durocher, D. and Sicheri, F. 2013. Reconstitution and characterization of eukaryotic N6-threonylcarbamoylation of tRNA using a minimal enzyme system. Nucleic Acids Res. 41, 6332-6346. https://doi.org/10.1093/nar/gkt322
- Zhang, W., Collinet, B., Perrochia, L., Durand, D. and van Tilbeurgh, H. 2015. The ATP-mediated formation of the YgjD-YeaZ-YjeE complex is required for the biosynthesis of tRNA t6A in Escherichia coli. Nucleic Acids Res. 43, 1804-1817. https://doi.org/10.1093/nar/gku1397