Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.2.257

Isolation of Temperature-sensitive Mutant Escherichia coli YrdC Involved in Universal t6 A tRNA Synthesis  

Hwang, Jihwan (Department of Microbiology, Pusan National University)
Publication Information
Journal of Life Science / v.28, no.2, 2018 , pp. 257-264 More about this Journal
Abstract
The YrdC superfamily is a group of proteins that are highly conserved in almost all organisms sequenced so far. YrdC in Escherichia coli was suggested to be involved in ribosome biogenesis, translation termination, cold adaptation, and threonylcarbamoyl adenosine formation in tRNA. In this study, to unambiguously demonstrate that yrdC is essential in E. coli, we constructed two yrdC mutant strains of E. coli and examined their phenotypes. In the temperature-sensitive yrdC mutant strain, cell growth stopped almost immediately under nonpermissive conditions and it appeared to accumulate 16S ribosomal RNA precursors without significant accumulation of 30S ribosomal subunits. We also cloned yeast and human homologs and demonstrated that they complement the E. coli yrdC-deletion strain. By mutational study, we demonstrated that the concave surface in the middle of the YrdC protein plays an important role in E. coli, yeast, and human versions. By comparison of two yrdC-deletion strains, we also unambiguously demonstrated that yrdC is essential for viability in E. coli and that the functions of its yeast and human homologs overlap with that of E. coli YrdC.
Keywords
ATPase; Escherichia coli; threonylcarbamoyl adenosine; tRNA; YrdC;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Comartin, D. J. and Brown, E. D. 2006. Non-ribosomal factors in ribosome subunit assembly are emerging targets for new antibacterial drugs. Curr. Opin. Pharmacol. 6, 453-458.   DOI
2 Datsenko, K. A. and Wanner, B. L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA. 97, 6640-6645.   DOI
3 Deutsch, C., El Yacoubi, B., de Crecy-Lagard, V. and Iwata-Reuyl, D. 2012. Biosynthesis of threonylcarbamoyl adenosine (t6A), a universal tRNA nucleoside. J. Biol. Chem. 287, 13666-13673.   DOI
4 El Yacoubi, B., Lyons, B., Cruz, Y., Reddy, R., Nordin, B., Agnelli, F., Williamson, J. R., Schimmel, P., Swairjo, M. A. and de Crecy-Lagard, V. 2009. The universal YrdC/Sua5 family is required for the formation of threonylcarbamoyladenosine in tRNA. Nucleic Acids Res. 37, 2894-2909.   DOI
5 Fu, T. M., Liu, X., Li, L. and Su, X. D. 2010. The structure of the hypothetical protein smu.1377c from Streptococcus mutans suggests a role in tRNA modification. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66, 771-775.   DOI
6 Guzman, L. M., Belin, D., Carson, M. J. and Beckwith, J. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121-4130.   DOI
7 Hampsey, M., Na, J. and Pinto, I. 1991. Isolation and characterization of the Sua5 gene, which affects AUG initiation codon selection in Saccharomyces cerevisiae. FASEB J. 5, A808-A808.
8 Hampsey, M., Na, J. G., Pinto, I., Ware, D. E. and Berroteran, R. W. 1991. Extragenic suppressors of a translation initiation defect in the cyc1 gene of Saccharomyces cerevisiae. Biochimie 73, 1445-1455.   DOI
9 Harris, K. A., Jones, V., Bilbille, Y., Swairjo, M. A. and Agris, P. F. 2011. YrdC exhibits properties expected of a subunit for a tRNA threonylcarbamoyl transferase. RNA 17, 1678-1687.   DOI
10 Hasunuma, K. and Sekiguchi, M. 1979. Effect of DNA mutations on the replication of plasmid pSC101 in Escherichia coli K-12. J. Bacteriol. 137, 1095-1099.
11 Hwang, J. and Inouye, M. 2006. The tandem GTPase, Der, is essential for the biogenesis of 50S ribosomal subunits in Escherichia coli. Mol. Microbiol. 61, 1660-1672.   DOI
12 Jiang, W., Prokopenko, O., Wong, L., Inouye, M. and Mirochnitchenko, O. 2005. IRIP, a new ischemia/reperfusion-inducible protein that participates in the regulation of transporter activity. Mol. Cell Biol. 25, 6496-6508.   DOI
13 Lerner, C. G., Kobayashi, T. and Inouye, M. 1990. Isolation of subtilisin pro-sequence mutations that affect formation of active protease by localized random polymerase chain reaction mutagenesis. J. Biol. Chem. 265, 20085-20086.
14 Kaczanowska, M. and Ryden-Aulin, M. 2004. Temperature sensitivity caused by mutant release factor 1 is suppressed by mutations that affect 16S rRNA maturation. J. Bacteriol. 186, 3046-3055.   DOI
15 Kaczanowska, M. and Ryden-Aulin, M. 2005. The YrdC protein-a putative ribosome maturation factor. Biochim. Biophys. Acta 1727, 87-96.   DOI
16 Kuratani, M., Kasai, T., Akasaka, R., Higashijima, K., Terada, T., Kigawa, T., Shinkai, A., Bessho, Y. and Yokoyama, S. 2011. Crystal structure of Sulfolobus tokodaii Sua5 complexed with L-threonine and AMPPNP. Proteins 79, 2065-2075.   DOI
17 Lin, C. A., Ellis, S. R. and True, H. L. 2010. The Sua5 protein is essential for normal translational regulation in yeast. Mol. Cell Biol. 30, 354-363.   DOI
18 Meng, F. L., Chen, X. F., Hu, Y., Tang, H. B., Dang, W. and Zhou, J. Q. 2010. Sua5p is required for telomere recombination in Saccharomyces cerevisiae. Cell Res. 20, 495-498.   DOI
19 Carmel, D., Dahlstrom, K. M., Holmstrom, M., Allahverdiyeva, Y., Battchikova, N., Aro, E. M., Salminen, T. A. and Mulo, P. 2013. Structural model, physiology and regulation of Slr0006 in Synechocystis PCC 6803. Arch. Microbiol. 195, 727-736.   DOI
20 Armstrong, K. A., Acosta, R., Ledner, E., Machida, Y., Pancotto, M., McCormick, M., Ohtsubo, H. and Ohtsubo, E. 1984. A $37{\time}10^3$ molecular weight plasmid-encoded protein is required for replication and copy number control in the plasmid pSC101 and its temperature-sensitive derivative pHS1. J. Mol. Biol. 175, 331-348.   DOI
21 Chen, J., Ji, C., Gu, S., Zhao, E., Dai, J., Huang, L., Qian, J., Ying, K., Xie, Y. and Mao, Y. 2003. Isolation and identification of a novel cDNA that encodes human yrdC protein. J. Hum. Genet. 48, 164-169.   DOI
22 Cohen, S. N. and Chang, A. C. 1977. Revised interpretation of the origin of the pSC101 plasmid. J. Bacteriol. 132, 734-737.
23 Teplova, M., Tereshko, V., Sanishvili, R., Joachimiak, A., Bushueva, T., Anderson, W. F. and Egli, M. 2000. The structure of the yrdC gene product from Escherichia coli reveals a new fold and suggests a role in RNA binding. Protein Sci. 9, 2557-2566.   DOI
24 Meng, F. L., Hu, Y., Shen, N., Tong, X. J., Wang, J., Ding, J. and Zhou, J. Q. 2009. Sua5p a single-stranded telomeric DNA-binding protein facilitates telomere replication. EMBO J. 28, 1466-1478.   DOI
25 Miller, J. H. 1992. A short course in bacterial genetics : a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
26 Na, J. G., Pinto, I. and Hampsey, M. 1992. Isolation and characterization of SUA5, a novel gene required for normal growth in Saccharomyces cerevisiae. Genetics 131, 791-801.
27 Ryden, S. M. and Isaksson, L. A. 1984. A temperature-sensitive mutant of Escherichia coli that shows enhanced misreading of UAG/A and increased efficiency for some tRNA nonsense suppressors. Mol. Gen. Genet. 193, 38-45.   DOI
28 Spee, J. H., de Vos, W. M. and Kuipers, O. P. 1993. Efficient random mutagenesis method with adjustable mutation frequency by use of PCR and dITP. Nucleic Acids Res. 21, 777-778.   DOI
29 Wan, L. C., Mao, D. Y., Neculai, D., Strecker, J., Chiovitti, D., Kurinov, I., Poda, G., Thevakumaran, N., Yuan, F., Szilard, R. K., Lissina, E., Nislow, C., Caudy, A. A., Durocher, D. and Sicheri, F. 2013. Reconstitution and characterization of eukaryotic N6-threonylcarbamoylation of tRNA using a minimal enzyme system. Nucleic Acids Res. 41, 6332-6346.   DOI
30 Zhang, W., Collinet, B., Perrochia, L., Durand, D. and van Tilbeurgh, H. 2015. The ATP-mediated formation of the YgjD-YeaZ-YjeE complex is required for the biosynthesis of tRNA t6A in Escherichia coli. Nucleic Acids Res. 43, 1804-1817.   DOI