참고문헌
- Agarwal, U. P., R. Sabo, R. S. Reiner, C. M. Clemons and A. W. Rudie. 2012. Spatially resolved characterization of cellulose nanocrystal-polypropylene composite by confocal raman microscopy. Applied spectroscopy 66(7): 750-756. https://doi.org/10.1366/11-06563
- Agustin, M. B., B. Ahmmad, S. M. M. Alonzo and F. M. Patriana. 2014. Bioplastic based on starch and cellulose nanocrystals from rice straw. Journal of Reinforced Plastics and Composites 33(24): 2205-2213. https://doi.org/10.1177/0731684414558325
- Agustin, M. B., B. Ahmmad, E. R. P. De Leon, J. L. Buenaobra, J. R. Salazar and F. Hirose. 2013. Starch-based biocomposite films reinforced with cellulose nanocrystals from garlic stalks. Polymer Composites 34(8): 1325-1332. https://doi.org/10.1002/pc.22546
- Akhlaghi, S. P., R. C. Berry and K. C. Tam. 2013. Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20(4): 1747-1764. https://doi.org/10.1007/s10570-013-9954-y
- Arrieta, M., E. Fortunati, F. Dominici, E. Rayon, J. Lopez and J. Kenny. 2014. Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydrate Polymers 107: 16-24. https://doi.org/10.1016/j.carbpol.2014.02.044
- Ashori, A. 2008. Wood-plastic composites as promising green-composites for automotive industries. Bioresource Technology 99(11): 4661-4667. https://doi.org/10.1016/j.biortech.2007.09.043
- Bardiya, N., D. Somayaji and S. Khanna. 1996. Biomethanation of banana peel and pineapple waste. Bioresource Technology 58(1): 73-76. https://doi.org/10.1016/S0960-8524(96)00107-1
- Battegazzore, D., S. Bocchini, J. Alongi, A. Frache and F. Marino. 2014. Cellulose extracted from rice husk as filler for poly (lactic acid): preparation and characterization. Cellulose 21(3): 1813-1821. https://doi.org/10.1007/s10570-014-0207-5
- Ben Azouz, K., E. C. Ramires, W. Van den Fonteyne, N. El Kissi and A. Dufresne. 2011. Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Letters 1(1): 236-240. https://doi.org/10.1021/mz2001737
- Cao, X., Y. Chen, P. Chang, A. Muir and G. Falk. 2008. Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polymer Letters 2(7): 502-510. https://doi.org/10.3144/expresspolymlett.2008.60
- Cao, X., H. Dong and C. M. Li. 2007. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8(3): 899-904. https://doi.org/10.1021/bm0610368
- Cha, D. S., J. H. Choi, M. S. Chinnan and H. J. Park. 2002. Antimicrobial films based on Na-alginate and ls in waterbornLWT-Food Science and Technology 35(8): 715-719. https://doi.org/10.1006/fstl.2002.0928
- Chang, C., A. Lue and L. Zhang. 2008. Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromolecular Chemistry and Physics 209(12): 1266-1273. https://doi.org/10.1002/macp.200800161
- Chen, D., D. Lawton, M. Thompson and Q. Liu. 2012. Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste. Carbohydrate Polymers 90(1): 709-716. https://doi.org/10.1016/j.carbpol.2012.06.002
- Chen, Y., C. Liu, P. R. Chang, X. Cao and D. P. Anderson. 2009. Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydrate Polymers 76(4): 607-615. https://doi.org/10.1016/j.carbpol.2008.11.030
- Choi, Y. and J. Simonsen. 2006. Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. Journal of Nanoscience and Nanotechnology 6(3): 633-639. https://doi.org/10.1166/jnn.2006.132
- Dai, H. and H. Huang. 2016. Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue. Carbohydrate Polymers 148: 1-10. https://doi.org/10.1016/j.carbpol.2016.04.040
- De France, K. J., K. J. Chan, E. D. Cranston and T. Hoare. 2016. Enhanced mechanical properties in cellulose nanocrystal-poly (oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking. Biomacromolecules 17(2): 649-660. https://doi.org/10.1021/acs.biomac.5b01598
- De Menezes, A. J., G. Siqueira, A. A. Curvelo and A. Dufresne. 2009. Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50(19): 4552-4563. https://doi.org/10.1016/j.polymer.2009.07.038
- Ditzel, F. I., E. Prestes, B. M. Carvalho, I. M. Demiate and L. A. Pinheiro. 2017. Nanocrystalline cellulose extracted from pine wood and corncob. Carbohydrate Polymers 157: 1577-1585. https://doi.org/10.1016/j.carbpol.2016.11.036
- Domingues, R. M., M. E. Gomes and R. L. Reis. 2014. The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15(7): 2327-2346. https://doi.org/10.1021/bm500524s
- Domingues, R. M., M. Silva, P. Gershovich, S. Betta, P. Babo, S. G. Caridade and M. E. Gomes. 2015. Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications. Bioconjugate Chemistry 26(8): 1571-1581. https://doi.org/10.1021/acs.bioconjchem.5b00209
- Dong, H., K. E. Strawhecker, J. F. Snyder, J. A. Orlicki, R. S. Reiner and A. W. Rudie. 2012. Cellulose nanocrystals as a reinforcing material for electrospun poly (methyl methacrylate) fibers: Formation, properties and nanomechanical characterization. Carbohydrate Polymers 87(4): 2488-2495. https://doi.org/10.1016/j.carbpol.2011.11.015
- Dos Santos, R. M., W. P. F. Neto, H. A. Silvério, D. F. Martins, D. F. Dantas and D. Pasquini. 2013. Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Industrial Crops and Products 50: 707-714. https://doi.org/10.1016/j.indcrop.2013.08.049
- Dufresne, A. 2012. From Nature to High Performance Tailored Materials. Berlin, Germany: Walter de Gruyter.
- Edwards, J. V., N. Prevost, K. Sethumadhavan, A. Ullah and B. Condon. 2013. Peptide conjugated cellulose nanocrystals with sensitive human neutrophil elastase sensor activity. Cellulose 20(3): 1223-1235. https://doi.org/10.1007/s10570-013-9901-y
- Eichhorn, S., C. Baillie, N. Zafeiropoulos, L. Mwaikambo, M. Ansell, A. Dufresne and L. Groom. 2001. Current international research into cellulosic fibres and composites. Journal of Materials Science 36(9): 2107-2131. https://doi.org/10.1023/A:1017512029696
- Eyley, S. and W. Thielemans. 2014. Surface modification of cellulose nanocrystals. Nanoscale 6(14): 7764-7779. https://doi.org/10.1039/C4NR01756K
- Favier, V., H. Chanzy and J. Cavaille. 1995. Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28(18): 6365-6367. https://doi.org/10.1021/ma00122a053
- Fortunati, E., I. Armentano, Q. Zhou, A. Iannoni, E. Saino, L. Visai and J. Kenny. 2012. Multifunctional bionanocomposite films of poly (lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydrate Polymers 87(2): 1596-1605. https://doi.org/10.1016/j.carbpol.2011.09.066
- Fortunati, E., F. Luzi, A. Jimenez, D. Gopakumar, D. Puglia, S. Thomas, L. Torre. 2016. Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydrate Polymers 149: 357-368. https://doi.org/10.1016/j.carbpol.2016.04.120
- Fortunati, E., F. Luzi, D. Puglia, F. Dominici, C. Santulli, J. Kenny and L. Torre. 2014. Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. European Polymer Journal 56: 77-91. https://doi.org/10.1016/j.eurpolymj.2014.03.030
- Fortunati, E., D. Puglia, M. Monti, C. Santulli, M. Maniruzzaman and J. Kenny. 2013. Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. Journal of Applied Polymer Science 128(5): 3220-3230. https://doi.org/10.1002/app.38524
- Gardner, D. J., G. S. Oporto, R. Mills and M. A. S. A. Samir. 2008. Adhesion and surface issues in cellulose and nanocellulose. Journal of Adhesion Science and Technology 22(5-6): 545-567. https://doi.org/10.1163/156856108X295509
- Gassan, J. and A. K. Bledzki. 1999. Alkali treatment of jute fibers: relationship between structure and mechanical properties. Journal of Applied Polymer Science 71(4): 623-629. https://doi.org/10.1002/(SICI)1097-4628(19990124)71:4<623::AID-APP14>3.0.CO;2-K
- Gkioni, K., S. C. Leeuwenburgh, T. E. Douglas, A. G. Mikos and J. A. Jansen. 2010. Mineralization of hydrogels for bone regeneration. Tissue Engineering Part B: Reviews 16(6): 577-585. https://doi.org/10.1089/ten.teb.2010.0462
- Habibi, Y., L. A. Lucia and O. J. Rojas. 2010. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews 110(6): 3479-3500. https://doi.org/10.1021/cr900339w
- Hamad, W. 2006. On the development and applications of cellulosic nanofibrillar and nanocrystalline materials. The Canadian Journal of Chemical Engineering 84(5): 513-519. https://doi.org/10.1002/cjce.5450840501
- Helbert, W., J. Cavaille and A. Dufresne. 1996. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior. Polymer Composites 17(4): 604-611. https://doi.org/10.1002/pc.10650
- Huq, T., S. Salmieri, A. Khan, R. A. Khan, C. Le Tien, B. Riedl and M. R. Kamal. 2012. Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydrate Polymers 90(4): 1757-1763. https://doi.org/10.1016/j.carbpol.2012.07.065
- Jiang, F., S. Han and Y.-L. Hsieh. 2013. Controlled defibrillation of rice straw cellulose and self-assembly of cellulose nanofibrils into highly crystalline fibrous materials. RSC Advances 3(30): 12366-12375. https://doi.org/10.1039/c3ra41646a
- Jiang, F. and Y. L. Hsieh. 2015. Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydrate Polymers 122: 60-68. https://doi.org/10.1016/j.carbpol.2014.12.064
- Johar, N., I. Ahmad and A. Dufresne. 2012. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products 37(1): 93-99. https://doi.org/10.1016/j.indcrop.2011.12.016
- Juntao, T. 2016. Functionalized Cellulose Nanocrystals (CNC) for Advanced Applications. PhD diss. University of Waterloo, Department of Chemical Engineering.
- Kaboorani, A., B. Riedl, P. Blanchet, M. Fellin, O. Hosseinaei and S. Wang. 2012. Nanocrystalline cellulose (NCC): A renewable nano-material for polyvinyl acetate (PVA) adhesive. European Polymer Journal 48(11): 1829-1837. https://doi.org/10.1016/j.eurpolymj.2012.08.008
- Kalia, S., S. Boufi, A. Celli and S. Kango. 2014. Nanofibrillated cellulose: surface modification and potential applications. Colloid and Polymer Science 292(1): 5-31. https://doi.org/10.1007/s00396-013-3112-9
- Kalia, S., A. Dufresne, B. M. Cherian, B. S. Kaith, L. Averous, J. Njuguna and E. Nassiopoulos. 2011. Cellulose-based bio-and nanocomposites: a review. International Journal of Polymer Science.
- Kargarzadeh, H., I. Ahmad, I. Abdullah, A. Dufresne, S. Y. Zainudin and R. M. Sheltami. 2012. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19(3): 855-866. https://doi.org/10.1007/s10570-012-9684-6
- Khalil, H. A., A. Bhat and A. I. Yusra. 2012. Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers 87(2): 963-979. https://doi.org/10.1016/j.carbpol.2011.08.078
- Khan, A., R. A. Khan, S. Salmieri, C. Le Tien, B. Riedl, J. Bouchard and M. Lacroix. 2012. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers 90(4): 1601-1608. https://doi.org/10.1016/j.carbpol.2012.07.037
- Khan, A., K. D. Vu, G. Chauve, J. Bouchard, B. Riedl and M. Lacroix. 2014. Optimization of microfluidization for the homogeneous distribution of cellulose nanocrystals (CNCs) in biopolymeric matrix. Cellulose 21(5): 3457-3468. https://doi.org/10.1007/s10570-014-0361-9
- Lalia, B. S., Y. A. Samad and R. Hashaikeh. 2013. Nanocrystalline cellulose-reinforced composite mats for lithium-ion batteries: electrochemical and thermo-mechanical performance. Journal of Solid State Electrochemistry 17(3): 575-581. https://doi.org/10.1007/s10008-012-1894-1
- Lam, E., K. B. Male, J. H. Chong, A. C. Leung and J. H. Luong. 2012. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends in Biotechnology 30(5): 283-290. https://doi.org/10.1016/j.tibtech.2012.02.001
- Li, V. C. F., C. K. Dunn, Z. Zhang, Y. Deng and H. J. Qi. 2017. Direct Ink Write (DIW) 3D printed cellulose nanocrystal aerogel structures. Scientific Reports 7(1): 8018. https://doi.org/10.1038/s41598-017-07771-y
- Lin, N., G. Chen, J. Huang, A. Dufresne and P. R. Chang. 2009. Effects of polymer‐grafted natural nanocrystals on the structure and mechanical properties of poly (lactic acid): A case of cellulose whisker‐graft‐polycaprolactone. Journal of Applied Polymer Science 113(5): 3417-3425. https://doi.org/10.1002/app.30308
- Lin, N. and A. Dufresne. 2014. Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal 59: 302-325. https://doi.org/10.1016/j.eurpolymj.2014.07.025
- Lin, N., J. Huang, P. R. Chang, J. Feng and J. Yu. 2011. Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid). Carbohydrate Polymers 83(4): 1834-1842. https://doi.org/10.1016/j.carbpol.2010.10.047
- Liu, R., H. Yu and Y. Huang. 2005. Structure and morphology of cellulose in wheat straw. Cellulose 12(1): 25-34. https://doi.org/10.1023/B:CELL.0000049346.28276.95
- Lu, P. and Y.-L. Hsieh. 2010. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydrate Polymers 82(2): 329-336. https://doi.org/10.1016/j.carbpol.2010.04.073
- Luduena, L., D. Fasce, V. A. Alvarez and P. M. Stefani. 2011. Nanocellulose from rice husk following alkaline treatment to remove silica. BioResources 6(2): 1440-1453.
- Mascheroni, E., R. Rampazzo, M. A. Ortenzi, G. Piva, S. Bonetti and L. Piergiovanni. 2016. Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose 23(1): 779-793. https://doi.org/10.1007/s10570-015-0853-2
- Modulevsky, D. J., C. Lefebvre, K. Haase, Z. Al-Rekabi and A. E. Pelling. 2014. Apple derived cellulose scaffolds for 3D mammalian cell culture. PloS one 9(5): e97835. https://doi.org/10.1371/journal.pone.0097835
- Moon, R. J., A. Martini, J. Nairn, J. Simonsen and J. Youngblood. 2011. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews 40(7): 3941-3994. https://doi.org/10.1039/c0cs00108b
- Nawirska, A. and M. Kwasniewska. 2005. Dietary fibre fractions from fruit and vegetable processing waste. Food Chemistry 91(2): 221-225. https://doi.org/10.1016/j.foodchem.2003.10.005
- Neto, W. P. F., H. A. Silverio, N. O. Dantas and D. Pasquini. 2013. Extraction and characterization of cellulose nanocrystals from agro-industrial residue-soy hulls. Industrial Crops and Products 42: 480-488. https://doi.org/10.1016/j.indcrop.2012.06.041
- Nickerson, R. and J. Habrle. 1947. Cellulose intercrystalline structure. Industrial & Engineering Chemistry 39(11): 1507-1512. https://doi.org/10.1021/ie50455a024
- Ntoutoume, G. M. N., R. Granet, J. P. Mbakidi, F. Brégier, D. Y. Léger, C. Fidanzi-Dugas and V. Sol. 2016. Development of curcumin-cyclodextrin/cellulose nanocrystals complexes: New anticancer drug delivery systems. Bioorganic & Medicinal Chemistry Letters 26(3): 941-945. https://doi.org/10.1016/j.bmcl.2015.12.060
- O'sullivan, A. C. 1997. Cellulose: the structure slowly unravels. Cellulose 4(3): 173-207. https://doi.org/10.1023/A:1018431705579
- Ooi, S. Y., I. Ahmad and M. C. I. M. Amin. 2016. Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Industrial Crops and Products 93: 227-234. https://doi.org/10.1016/j.indcrop.2015.11.082
- Oun, A. A. and J.-W. Rhim. 2016. Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydrate Polymers 150: 187-200. https://doi.org/10.1016/j.carbpol.2016.05.020
- Pauly, M., P. Albersheim, A. Darvill and W. S. York. 1999. Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. The Plant Journal 20(6): 629-639. https://doi.org/10.1046/j.1365-313X.1999.00630.x
- Pei, A., N. Butchosa, L. A. Berglund and Q. Zhou. 2013. Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9(6): 2047-2055. https://doi.org/10.1039/c2sm27344f
- Peppas, N. A., K. M. Wood and J. O. Blanchette. 2004. Hydrogels for oral delivery of therapeutic proteins. Expert Opinion on Biological Therapy 4(6): 881-887. https://doi.org/10.1517/14712598.4.6.881
- PErez, S. and D. Samain. 2010. Structure and engineering of celluloses. Advances in Carbohydrate Chemistry and Biochemistry 64: 25-116.
- Roman, M., S. Dong, A. Hirani and Y. W. Lee. 2009. Cellulose nanocrystals for drug delivery. ACS Publication 4: 81-91.
- Roy, D., M. Semsarilar, J. T. Guthrie and S. Perrier. 2009. Cellulose modification by polymer grafting: A review. Chemical Society Reviews 38(7): 2046-2064. https://doi.org/10.1039/b808639g
- Sadasivuni, K. K., A. Kafy, L. Zhai, H. U. Ko, S. Mun and J. Kim. 2015. Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. Small 11(8): 994-1002. https://doi.org/10.1002/smll.201402109
- Sadasivuni, K. K., D. Ponnamma, H.-U. Ko, H. C. Kim, L. Zhai and J. Kim. 2016. Flexible NO2 sensors from renewable cellulose nanocrystals/iron oxide composites. Sensors and Actuators B: Chemical 233: 633-638. https://doi.org/10.1016/j.snb.2016.04.134
- Sakurada, I., Y. Nukushina and T. Ito. 1962. Experimental determination of the elastic modulus of crystalline regions in oriented polymers. Journal of Polymer Science Part A: Polymer Chemistry 57(165): 651-660.
- Salmieri, S., F. Islam, R. A. Khan, F. M. Hossain, H. M. Ibrahim, C. Miao and M. Lacroix. 2014. Antimicrobial nanocomposite films made of poly (lactic acid)-cellulose nanocrystals (PLA-CNC) in food applications: Part A-effect of nisin release on the inactivation of Listeria monocytogenes in ham. Cellulose 21(3): 1837-1850. https://doi.org/10.1007/s10570-014-0230-6
- Sannino, A., C. Demitri and M. Madaghiele. 2009. Biodegradable cellulose-based hydrogels: Design and applications. Materials 2(2): 353-373. https://doi.org/10.3390/ma2020353
- Shi, Q., C. Zhou, Y. Yue, W. Guo, Y. Wu and Q. Wu. 2012. Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals. Carbohydrate Polymers 90(1): 301-308. https://doi.org/10.1016/j.carbpol.2012.05.042
- Silverio, H. A., W. P. F. Neto, N. O. Dantas and D. Pasquini. 2013. Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Industrial Crops and Products 44: 427-436. https://doi.org/10.1016/j.indcrop.2012.10.014
- Sinha, A., E. M. Martin, K. T. Lim, D. J. Carrier, H. Han, V. P. Zharov and J. W. Kim. 2015. Cellulose nanocrystals as advanced "green" materials for biological and biomedical engineering. Journal of Biosystems Engineering 40(4): 373-393. https://doi.org/10.5307/JBE.2015.40.4.373
- Siro, I. and D. Plackett. 2010. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 17(3): 459-494. https://doi.org/10.1007/s10570-010-9405-y
- Smith, H. D. 1937. The Structure of Cellulose. Textile Research 7(12): 453-460.
- Sturcova, A., G. R. Davies and S. J. Eichhorn. 2005. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2): 1055-1061. https://doi.org/10.1021/bm049291k
- Vilela, C., R. J. B. Pinto, A. R. P. Figueiredo, C. P. Neto, A. J. D. Silvestre and C. S. R. Freire. 2017. Development and applications of cellulose nanofibres based polymer nanocomposites. In: Advanced Composite Materials: Properties and Applications. ed. E. Bafekrpour, pp. 1-65. Berlin, Germany: Walter de Gruyter.
- Wang, H. and M. Roman. 2011. Formation and properties of chitosan− cellulose nanocrystal polyelectrolyte−macroion complexes for drug delivery applications. Biomacromolecules 12(5): 1585-1593. https://doi.org/10.1021/bm101584c
- Wu, Q., Y. Meng, K. Concha, S. Wang, Y. Li, L. Ma and S. Fu. 2013. Influence of temperature and humidity on nano-mechanical properties of cellulose nanocrystal films made from switchgrass and cotton. Industrial Crops and Products 48: 28-35. https://doi.org/10.1016/j.indcrop.2013.03.032
- Xu, X., F. Liu, L. Jiang, J. Zhu, D. Haagenson and D. P. Wiesenborn. 2013. Cellulose nanocrystals vs. cellulose nanofibrils: A comparative study on their microstructures and effects as polymer reinforcing agents. ACS Applied Materials & Interfaces 5(8): 2999-3009. https://doi.org/10.1021/am302624t
- Yuan, H., Y. Nishiyama, M. Wada and S. Kuga. 2006. Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7(3): 696-700. https://doi.org/10.1021/bm050828j
- Zainuddin, S. Y. Z., I. Ahmad, H. Kargarzadeh, I. Abdullah and A. Dufresne. 2013. Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites. Carbohydrate Polymers 92(2): 2299-2305. https://doi.org/10.1016/j.carbpol.2012.11.106
- Zhou, C., Q. Shi, W. Guo, L. Terrell, A. T. Qureshi, D. J. Hayes and Q. Wu. 2013. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Applied Materials & Interfaces 5(9): 3847-3854. https://doi.org/10.1021/am4005072
- Zhou, C., Q. Wu, T. Lei and I. I. Negulescu. 2014. Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chemical Engineering Journal 251: 17-24. https://doi.org/10.1016/j.cej.2014.04.034