DOI QR코드

DOI QR Code

Cellulose-based Nanocrystals: Sources and Applications via Agricultural Byproducts

  • Seo, Yu-Ri (Department of Biosystems Engineering, Kangwon National University) ;
  • Kim, Jin-Woo (Department of Biological and Agricultural Engineering and Institute for Nanoscience and Engineering, University of Arkansas) ;
  • Hoon, Seonwoo (Department of Industrial Machinery Engineering, Sunchon National University) ;
  • Kim, Jangho (Department of Rural and Biosystems Engineering, Chonnam National University) ;
  • Chung, Jong Hoon (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Lim, Ki-Taek (Department of Biosystems Engineering, Kangwon National University)
  • 투고 : 2018.02.06
  • 심사 : 2018.02.28
  • 발행 : 2018.03.01

초록

Purpose: Cellulose nanocrystals (CNCs) are natural polymers that have been promoted as a next generation of new, sustainable materials. CNCs are invaluable as reinforcing materials for composites because they can impart improved mechanical, chemical, and thermal properties and they are biodegradable. The purpose of this review is to provide researchers with information that can assist in the application of CNCs extracted from waste agricultural byproducts (e.g. rice husks, corncobs, pineapple leaves). Methods & Results: This paper presents the unique characteristics of CNCs based on agricultural byproducts, and lists processing methods for manufacturing CNCs from agricultural byproducts. Various mechanical treatments (microfluidization and homogenization) and chemical treatments (alkali treatment, bleaching and hydrolysis) can be performed in order to generate nanocellulose. CNC-based composite properties and various applications are also discussed. Conclusions: CNC-based composites from agricultural byproducts can be combined to meet end-use applications such as sensors, batteries, films, food packaging, and 3D printing by utilizing their properties. The review discusses applications in food engineering, biological engineering, and cellulose-based hydrogels.

키워드

참고문헌

  1. Agarwal, U. P., R. Sabo, R. S. Reiner, C. M. Clemons and A. W. Rudie. 2012. Spatially resolved characterization of cellulose nanocrystal-polypropylene composite by confocal raman microscopy. Applied spectroscopy 66(7): 750-756. https://doi.org/10.1366/11-06563
  2. Agustin, M. B., B. Ahmmad, S. M. M. Alonzo and F. M. Patriana. 2014. Bioplastic based on starch and cellulose nanocrystals from rice straw. Journal of Reinforced Plastics and Composites 33(24): 2205-2213. https://doi.org/10.1177/0731684414558325
  3. Agustin, M. B., B. Ahmmad, E. R. P. De Leon, J. L. Buenaobra, J. R. Salazar and F. Hirose. 2013. Starch-based biocomposite films reinforced with cellulose nanocrystals from garlic stalks. Polymer Composites 34(8): 1325-1332. https://doi.org/10.1002/pc.22546
  4. Akhlaghi, S. P., R. C. Berry and K. C. Tam. 2013. Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20(4): 1747-1764. https://doi.org/10.1007/s10570-013-9954-y
  5. Arrieta, M., E. Fortunati, F. Dominici, E. Rayon, J. Lopez and J. Kenny. 2014. Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydrate Polymers 107: 16-24. https://doi.org/10.1016/j.carbpol.2014.02.044
  6. Ashori, A. 2008. Wood-plastic composites as promising green-composites for automotive industries. Bioresource Technology 99(11): 4661-4667. https://doi.org/10.1016/j.biortech.2007.09.043
  7. Bardiya, N., D. Somayaji and S. Khanna. 1996. Biomethanation of banana peel and pineapple waste. Bioresource Technology 58(1): 73-76. https://doi.org/10.1016/S0960-8524(96)00107-1
  8. Battegazzore, D., S. Bocchini, J. Alongi, A. Frache and F. Marino. 2014. Cellulose extracted from rice husk as filler for poly (lactic acid): preparation and characterization. Cellulose 21(3): 1813-1821. https://doi.org/10.1007/s10570-014-0207-5
  9. Ben Azouz, K., E. C. Ramires, W. Van den Fonteyne, N. El Kissi and A. Dufresne. 2011. Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Letters 1(1): 236-240. https://doi.org/10.1021/mz2001737
  10. Cao, X., Y. Chen, P. Chang, A. Muir and G. Falk. 2008. Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polymer Letters 2(7): 502-510. https://doi.org/10.3144/expresspolymlett.2008.60
  11. Cao, X., H. Dong and C. M. Li. 2007. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8(3): 899-904. https://doi.org/10.1021/bm0610368
  12. Cha, D. S., J. H. Choi, M. S. Chinnan and H. J. Park. 2002. Antimicrobial films based on Na-alginate and ls in waterbornLWT-Food Science and Technology 35(8): 715-719. https://doi.org/10.1006/fstl.2002.0928
  13. Chang, C., A. Lue and L. Zhang. 2008. Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromolecular Chemistry and Physics 209(12): 1266-1273. https://doi.org/10.1002/macp.200800161
  14. Chen, D., D. Lawton, M. Thompson and Q. Liu. 2012. Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste. Carbohydrate Polymers 90(1): 709-716. https://doi.org/10.1016/j.carbpol.2012.06.002
  15. Chen, Y., C. Liu, P. R. Chang, X. Cao and D. P. Anderson. 2009. Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydrate Polymers 76(4): 607-615. https://doi.org/10.1016/j.carbpol.2008.11.030
  16. Choi, Y. and J. Simonsen. 2006. Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. Journal of Nanoscience and Nanotechnology 6(3): 633-639. https://doi.org/10.1166/jnn.2006.132
  17. Dai, H. and H. Huang. 2016. Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue. Carbohydrate Polymers 148: 1-10. https://doi.org/10.1016/j.carbpol.2016.04.040
  18. De France, K. J., K. J. Chan, E. D. Cranston and T. Hoare. 2016. Enhanced mechanical properties in cellulose nanocrystal-poly (oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking. Biomacromolecules 17(2): 649-660. https://doi.org/10.1021/acs.biomac.5b01598
  19. De Menezes, A. J., G. Siqueira, A. A. Curvelo and A. Dufresne. 2009. Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50(19): 4552-4563. https://doi.org/10.1016/j.polymer.2009.07.038
  20. Ditzel, F. I., E. Prestes, B. M. Carvalho, I. M. Demiate and L. A. Pinheiro. 2017. Nanocrystalline cellulose extracted from pine wood and corncob. Carbohydrate Polymers 157: 1577-1585. https://doi.org/10.1016/j.carbpol.2016.11.036
  21. Domingues, R. M., M. E. Gomes and R. L. Reis. 2014. The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15(7): 2327-2346. https://doi.org/10.1021/bm500524s
  22. Domingues, R. M., M. Silva, P. Gershovich, S. Betta, P. Babo, S. G. Caridade and M. E. Gomes. 2015. Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications. Bioconjugate Chemistry 26(8): 1571-1581. https://doi.org/10.1021/acs.bioconjchem.5b00209
  23. Dong, H., K. E. Strawhecker, J. F. Snyder, J. A. Orlicki, R. S. Reiner and A. W. Rudie. 2012. Cellulose nanocrystals as a reinforcing material for electrospun poly (methyl methacrylate) fibers: Formation, properties and nanomechanical characterization. Carbohydrate Polymers 87(4): 2488-2495. https://doi.org/10.1016/j.carbpol.2011.11.015
  24. Dos Santos, R. M., W. P. F. Neto, H. A. Silvério, D. F. Martins, D. F. Dantas and D. Pasquini. 2013. Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Industrial Crops and Products 50: 707-714. https://doi.org/10.1016/j.indcrop.2013.08.049
  25. Dufresne, A. 2012. From Nature to High Performance Tailored Materials. Berlin, Germany: Walter de Gruyter.
  26. Edwards, J. V., N. Prevost, K. Sethumadhavan, A. Ullah and B. Condon. 2013. Peptide conjugated cellulose nanocrystals with sensitive human neutrophil elastase sensor activity. Cellulose 20(3): 1223-1235. https://doi.org/10.1007/s10570-013-9901-y
  27. Eichhorn, S., C. Baillie, N. Zafeiropoulos, L. Mwaikambo, M. Ansell, A. Dufresne and L. Groom. 2001. Current international research into cellulosic fibres and composites. Journal of Materials Science 36(9): 2107-2131. https://doi.org/10.1023/A:1017512029696
  28. Eyley, S. and W. Thielemans. 2014. Surface modification of cellulose nanocrystals. Nanoscale 6(14): 7764-7779. https://doi.org/10.1039/C4NR01756K
  29. Favier, V., H. Chanzy and J. Cavaille. 1995. Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28(18): 6365-6367. https://doi.org/10.1021/ma00122a053
  30. Fortunati, E., I. Armentano, Q. Zhou, A. Iannoni, E. Saino, L. Visai and J. Kenny. 2012. Multifunctional bionanocomposite films of poly (lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydrate Polymers 87(2): 1596-1605. https://doi.org/10.1016/j.carbpol.2011.09.066
  31. Fortunati, E., F. Luzi, A. Jimenez, D. Gopakumar, D. Puglia, S. Thomas, L. Torre. 2016. Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydrate Polymers 149: 357-368. https://doi.org/10.1016/j.carbpol.2016.04.120
  32. Fortunati, E., F. Luzi, D. Puglia, F. Dominici, C. Santulli, J. Kenny and L. Torre. 2014. Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. European Polymer Journal 56: 77-91. https://doi.org/10.1016/j.eurpolymj.2014.03.030
  33. Fortunati, E., D. Puglia, M. Monti, C. Santulli, M. Maniruzzaman and J. Kenny. 2013. Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. Journal of Applied Polymer Science 128(5): 3220-3230. https://doi.org/10.1002/app.38524
  34. Gardner, D. J., G. S. Oporto, R. Mills and M. A. S. A. Samir. 2008. Adhesion and surface issues in cellulose and nanocellulose. Journal of Adhesion Science and Technology 22(5-6): 545-567. https://doi.org/10.1163/156856108X295509
  35. Gassan, J. and A. K. Bledzki. 1999. Alkali treatment of jute fibers: relationship between structure and mechanical properties. Journal of Applied Polymer Science 71(4): 623-629. https://doi.org/10.1002/(SICI)1097-4628(19990124)71:4<623::AID-APP14>3.0.CO;2-K
  36. Gkioni, K., S. C. Leeuwenburgh, T. E. Douglas, A. G. Mikos and J. A. Jansen. 2010. Mineralization of hydrogels for bone regeneration. Tissue Engineering Part B: Reviews 16(6): 577-585. https://doi.org/10.1089/ten.teb.2010.0462
  37. Habibi, Y., L. A. Lucia and O. J. Rojas. 2010. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews 110(6): 3479-3500. https://doi.org/10.1021/cr900339w
  38. Hamad, W. 2006. On the development and applications of cellulosic nanofibrillar and nanocrystalline materials. The Canadian Journal of Chemical Engineering 84(5): 513-519. https://doi.org/10.1002/cjce.5450840501
  39. Helbert, W., J. Cavaille and A. Dufresne. 1996. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior. Polymer Composites 17(4): 604-611. https://doi.org/10.1002/pc.10650
  40. Huq, T., S. Salmieri, A. Khan, R. A. Khan, C. Le Tien, B. Riedl and M. R. Kamal. 2012. Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydrate Polymers 90(4): 1757-1763. https://doi.org/10.1016/j.carbpol.2012.07.065
  41. Jiang, F., S. Han and Y.-L. Hsieh. 2013. Controlled defibrillation of rice straw cellulose and self-assembly of cellulose nanofibrils into highly crystalline fibrous materials. RSC Advances 3(30): 12366-12375. https://doi.org/10.1039/c3ra41646a
  42. Jiang, F. and Y. L. Hsieh. 2015. Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydrate Polymers 122: 60-68. https://doi.org/10.1016/j.carbpol.2014.12.064
  43. Johar, N., I. Ahmad and A. Dufresne. 2012. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products 37(1): 93-99. https://doi.org/10.1016/j.indcrop.2011.12.016
  44. Juntao, T. 2016. Functionalized Cellulose Nanocrystals (CNC) for Advanced Applications. PhD diss. University of Waterloo, Department of Chemical Engineering.
  45. Kaboorani, A., B. Riedl, P. Blanchet, M. Fellin, O. Hosseinaei and S. Wang. 2012. Nanocrystalline cellulose (NCC): A renewable nano-material for polyvinyl acetate (PVA) adhesive. European Polymer Journal 48(11): 1829-1837. https://doi.org/10.1016/j.eurpolymj.2012.08.008
  46. Kalia, S., S. Boufi, A. Celli and S. Kango. 2014. Nanofibrillated cellulose: surface modification and potential applications. Colloid and Polymer Science 292(1): 5-31. https://doi.org/10.1007/s00396-013-3112-9
  47. Kalia, S., A. Dufresne, B. M. Cherian, B. S. Kaith, L. Averous, J. Njuguna and E. Nassiopoulos. 2011. Cellulose-based bio-and nanocomposites: a review. International Journal of Polymer Science.
  48. Kargarzadeh, H., I. Ahmad, I. Abdullah, A. Dufresne, S. Y. Zainudin and R. M. Sheltami. 2012. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19(3): 855-866. https://doi.org/10.1007/s10570-012-9684-6
  49. Khalil, H. A., A. Bhat and A. I. Yusra. 2012. Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers 87(2): 963-979. https://doi.org/10.1016/j.carbpol.2011.08.078
  50. Khan, A., R. A. Khan, S. Salmieri, C. Le Tien, B. Riedl, J. Bouchard and M. Lacroix. 2012. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers 90(4): 1601-1608. https://doi.org/10.1016/j.carbpol.2012.07.037
  51. Khan, A., K. D. Vu, G. Chauve, J. Bouchard, B. Riedl and M. Lacroix. 2014. Optimization of microfluidization for the homogeneous distribution of cellulose nanocrystals (CNCs) in biopolymeric matrix. Cellulose 21(5): 3457-3468. https://doi.org/10.1007/s10570-014-0361-9
  52. Lalia, B. S., Y. A. Samad and R. Hashaikeh. 2013. Nanocrystalline cellulose-reinforced composite mats for lithium-ion batteries: electrochemical and thermo-mechanical performance. Journal of Solid State Electrochemistry 17(3): 575-581. https://doi.org/10.1007/s10008-012-1894-1
  53. Lam, E., K. B. Male, J. H. Chong, A. C. Leung and J. H. Luong. 2012. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends in Biotechnology 30(5): 283-290. https://doi.org/10.1016/j.tibtech.2012.02.001
  54. Li, V. C. F., C. K. Dunn, Z. Zhang, Y. Deng and H. J. Qi. 2017. Direct Ink Write (DIW) 3D printed cellulose nanocrystal aerogel structures. Scientific Reports 7(1): 8018. https://doi.org/10.1038/s41598-017-07771-y
  55. Lin, N., G. Chen, J. Huang, A. Dufresne and P. R. Chang. 2009. Effects of polymer‐grafted natural nanocrystals on the structure and mechanical properties of poly (lactic acid): A case of cellulose whisker‐graft‐polycaprolactone. Journal of Applied Polymer Science 113(5): 3417-3425. https://doi.org/10.1002/app.30308
  56. Lin, N. and A. Dufresne. 2014. Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal 59: 302-325. https://doi.org/10.1016/j.eurpolymj.2014.07.025
  57. Lin, N., J. Huang, P. R. Chang, J. Feng and J. Yu. 2011. Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid). Carbohydrate Polymers 83(4): 1834-1842. https://doi.org/10.1016/j.carbpol.2010.10.047
  58. Liu, R., H. Yu and Y. Huang. 2005. Structure and morphology of cellulose in wheat straw. Cellulose 12(1): 25-34. https://doi.org/10.1023/B:CELL.0000049346.28276.95
  59. Lu, P. and Y.-L. Hsieh. 2010. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydrate Polymers 82(2): 329-336. https://doi.org/10.1016/j.carbpol.2010.04.073
  60. Luduena, L., D. Fasce, V. A. Alvarez and P. M. Stefani. 2011. Nanocellulose from rice husk following alkaline treatment to remove silica. BioResources 6(2): 1440-1453.
  61. Mascheroni, E., R. Rampazzo, M. A. Ortenzi, G. Piva, S. Bonetti and L. Piergiovanni. 2016. Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose 23(1): 779-793. https://doi.org/10.1007/s10570-015-0853-2
  62. Modulevsky, D. J., C. Lefebvre, K. Haase, Z. Al-Rekabi and A. E. Pelling. 2014. Apple derived cellulose scaffolds for 3D mammalian cell culture. PloS one 9(5): e97835. https://doi.org/10.1371/journal.pone.0097835
  63. Moon, R. J., A. Martini, J. Nairn, J. Simonsen and J. Youngblood. 2011. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews 40(7): 3941-3994. https://doi.org/10.1039/c0cs00108b
  64. Nawirska, A. and M. Kwasniewska. 2005. Dietary fibre fractions from fruit and vegetable processing waste. Food Chemistry 91(2): 221-225. https://doi.org/10.1016/j.foodchem.2003.10.005
  65. Neto, W. P. F., H. A. Silverio, N. O. Dantas and D. Pasquini. 2013. Extraction and characterization of cellulose nanocrystals from agro-industrial residue-soy hulls. Industrial Crops and Products 42: 480-488. https://doi.org/10.1016/j.indcrop.2012.06.041
  66. Nickerson, R. and J. Habrle. 1947. Cellulose intercrystalline structure. Industrial & Engineering Chemistry 39(11): 1507-1512. https://doi.org/10.1021/ie50455a024
  67. Ntoutoume, G. M. N., R. Granet, J. P. Mbakidi, F. Brégier, D. Y. Léger, C. Fidanzi-Dugas and V. Sol. 2016. Development of curcumin-cyclodextrin/cellulose nanocrystals complexes: New anticancer drug delivery systems. Bioorganic & Medicinal Chemistry Letters 26(3): 941-945. https://doi.org/10.1016/j.bmcl.2015.12.060
  68. O'sullivan, A. C. 1997. Cellulose: the structure slowly unravels. Cellulose 4(3): 173-207. https://doi.org/10.1023/A:1018431705579
  69. Ooi, S. Y., I. Ahmad and M. C. I. M. Amin. 2016. Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Industrial Crops and Products 93: 227-234. https://doi.org/10.1016/j.indcrop.2015.11.082
  70. Oun, A. A. and J.-W. Rhim. 2016. Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydrate Polymers 150: 187-200. https://doi.org/10.1016/j.carbpol.2016.05.020
  71. Pauly, M., P. Albersheim, A. Darvill and W. S. York. 1999. Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. The Plant Journal 20(6): 629-639. https://doi.org/10.1046/j.1365-313X.1999.00630.x
  72. Pei, A., N. Butchosa, L. A. Berglund and Q. Zhou. 2013. Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9(6): 2047-2055. https://doi.org/10.1039/c2sm27344f
  73. Peppas, N. A., K. M. Wood and J. O. Blanchette. 2004. Hydrogels for oral delivery of therapeutic proteins. Expert Opinion on Biological Therapy 4(6): 881-887. https://doi.org/10.1517/14712598.4.6.881
  74. PErez, S. and D. Samain. 2010. Structure and engineering of celluloses. Advances in Carbohydrate Chemistry and Biochemistry 64: 25-116.
  75. Roman, M., S. Dong, A. Hirani and Y. W. Lee. 2009. Cellulose nanocrystals for drug delivery. ACS Publication 4: 81-91.
  76. Roy, D., M. Semsarilar, J. T. Guthrie and S. Perrier. 2009. Cellulose modification by polymer grafting: A review. Chemical Society Reviews 38(7): 2046-2064. https://doi.org/10.1039/b808639g
  77. Sadasivuni, K. K., A. Kafy, L. Zhai, H. U. Ko, S. Mun and J. Kim. 2015. Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. Small 11(8): 994-1002. https://doi.org/10.1002/smll.201402109
  78. Sadasivuni, K. K., D. Ponnamma, H.-U. Ko, H. C. Kim, L. Zhai and J. Kim. 2016. Flexible NO2 sensors from renewable cellulose nanocrystals/iron oxide composites. Sensors and Actuators B: Chemical 233: 633-638. https://doi.org/10.1016/j.snb.2016.04.134
  79. Sakurada, I., Y. Nukushina and T. Ito. 1962. Experimental determination of the elastic modulus of crystalline regions in oriented polymers. Journal of Polymer Science Part A: Polymer Chemistry 57(165): 651-660.
  80. Salmieri, S., F. Islam, R. A. Khan, F. M. Hossain, H. M. Ibrahim, C. Miao and M. Lacroix. 2014. Antimicrobial nanocomposite films made of poly (lactic acid)-cellulose nanocrystals (PLA-CNC) in food applications: Part A-effect of nisin release on the inactivation of Listeria monocytogenes in ham. Cellulose 21(3): 1837-1850. https://doi.org/10.1007/s10570-014-0230-6
  81. Sannino, A., C. Demitri and M. Madaghiele. 2009. Biodegradable cellulose-based hydrogels: Design and applications. Materials 2(2): 353-373. https://doi.org/10.3390/ma2020353
  82. Shi, Q., C. Zhou, Y. Yue, W. Guo, Y. Wu and Q. Wu. 2012. Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals. Carbohydrate Polymers 90(1): 301-308. https://doi.org/10.1016/j.carbpol.2012.05.042
  83. Silverio, H. A., W. P. F. Neto, N. O. Dantas and D. Pasquini. 2013. Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Industrial Crops and Products 44: 427-436. https://doi.org/10.1016/j.indcrop.2012.10.014
  84. Sinha, A., E. M. Martin, K. T. Lim, D. J. Carrier, H. Han, V. P. Zharov and J. W. Kim. 2015. Cellulose nanocrystals as advanced "green" materials for biological and biomedical engineering. Journal of Biosystems Engineering 40(4): 373-393. https://doi.org/10.5307/JBE.2015.40.4.373
  85. Siro, I. and D. Plackett. 2010. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 17(3): 459-494. https://doi.org/10.1007/s10570-010-9405-y
  86. Smith, H. D. 1937. The Structure of Cellulose. Textile Research 7(12): 453-460.
  87. Sturcova, A., G. R. Davies and S. J. Eichhorn. 2005. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2): 1055-1061. https://doi.org/10.1021/bm049291k
  88. Vilela, C., R. J. B. Pinto, A. R. P. Figueiredo, C. P. Neto, A. J. D. Silvestre and C. S. R. Freire. 2017. Development and applications of cellulose nanofibres based polymer nanocomposites. In: Advanced Composite Materials: Properties and Applications. ed. E. Bafekrpour, pp. 1-65. Berlin, Germany: Walter de Gruyter.
  89. Wang, H. and M. Roman. 2011. Formation and properties of chitosan− cellulose nanocrystal polyelectrolyte−macroion complexes for drug delivery applications. Biomacromolecules 12(5): 1585-1593. https://doi.org/10.1021/bm101584c
  90. Wu, Q., Y. Meng, K. Concha, S. Wang, Y. Li, L. Ma and S. Fu. 2013. Influence of temperature and humidity on nano-mechanical properties of cellulose nanocrystal films made from switchgrass and cotton. Industrial Crops and Products 48: 28-35. https://doi.org/10.1016/j.indcrop.2013.03.032
  91. Xu, X., F. Liu, L. Jiang, J. Zhu, D. Haagenson and D. P. Wiesenborn. 2013. Cellulose nanocrystals vs. cellulose nanofibrils: A comparative study on their microstructures and effects as polymer reinforcing agents. ACS Applied Materials & Interfaces 5(8): 2999-3009. https://doi.org/10.1021/am302624t
  92. Yuan, H., Y. Nishiyama, M. Wada and S. Kuga. 2006. Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7(3): 696-700. https://doi.org/10.1021/bm050828j
  93. Zainuddin, S. Y. Z., I. Ahmad, H. Kargarzadeh, I. Abdullah and A. Dufresne. 2013. Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites. Carbohydrate Polymers 92(2): 2299-2305. https://doi.org/10.1016/j.carbpol.2012.11.106
  94. Zhou, C., Q. Shi, W. Guo, L. Terrell, A. T. Qureshi, D. J. Hayes and Q. Wu. 2013. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Applied Materials & Interfaces 5(9): 3847-3854. https://doi.org/10.1021/am4005072
  95. Zhou, C., Q. Wu, T. Lei and I. I. Negulescu. 2014. Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chemical Engineering Journal 251: 17-24. https://doi.org/10.1016/j.cej.2014.04.034