DOI QR코드

DOI QR Code

지속가능성을 위한 도시 대중교통 레트로핏(Retrofitting) 효과분석

A Study on the Effects of Urban Public Transportation Retrofitting for Sustainability

  • 김승현 (서울시립대학교 교통공학과) ;
  • 나성용 (서울시립대학교 교통공학과) ;
  • 김주영 (서울시립대학교 도시과학연구원) ;
  • 이승재 (서울시립대학교 교통공학과)
  • KIM, Seunghyun (Department of Transportation Systems Engineering, University of Seoul) ;
  • NA, Sungyoung (Department of Transportation Systems Engineering, University of Seoul) ;
  • KIM, Jooyoung (Institute of Urban Sciences Integrated Urban Research Center, University of Seoul) ;
  • LEE, Seungjae (Department of Transportation Systems Engineering, University of Seoul)
  • 투고 : 2017.10.27
  • 심사 : 2018.01.26
  • 발행 : 2018.02.28

초록

최근 들어 장기적인 저성장과 도시과밀화로 인한 공간부족 등으로 도심내 새로운 기반설의 건설 및 증축이 매우 어려운 실정이다. 따라서 기존의 시설을 효율적으로 활용하면서도 지속가능한 개발을 유도할 수 있는 다양한 레트로핏(Retrofitting) 기법 및 도시 적용방안을 연구할 필요성이 있다. 레트로핏(Retrofit)이란 도심내 기존 시설물의 구조 및 기능, 운영방법 등을 지속가능한 체계로 개선하여, 환경영향을 저감시키고 에너지 사용을 절감하며 물이나 자원, 폐기물 등을 효율적으로 관리할 수 있도록 하는 기법이다. 본 연구에서는 도시의 구조적 위계를 반영할 수 있는 계층적 네트워크 디자인(Hierarchical Network Design) 기법을 적용하여 서울시 대중교통 노선을 효율적으로 레트로핏 할 수 있는 방법을 연구하였다. 계층적 네트워크 디자인 기법이란 허브의 기능에 따라 위계를 나누고 서로 다른 위계를 연결하여 하나의 계층적 네트워크를 구성하는 것을 의미한다. 서울시의 구조적 위계를 3도심, 7광역중심, 12지역중심으로 설정하고, 스마트카드 데이터 분석을 통해 교통허브를 선정하여 계층적 네트워크 디자인 기법에 따라 주요골격 네트워크(Back-Born Network)를 구축하였다. 구축된 계층적 네트워크 디자인을 토대로 대중교통 네트워크의 레트로핏을 적용한 결과, 간선버스 및 지선버스의 PKT 및 PHT가 개선전에 비해 일기준 약 2.6-3.2% 정도 감소하여 통행자 측면에서 편의성이 증대되는 효과를 볼 수 있었다.

In recent years, it is very difficult to construct and expand new infrastructures in a city center because of long-term low growth and lack of space due to urban overcrowding. So, there is a need to study a variety of Retrofitting techniques and urban applications that can lead to sustainable development while efficiently utilizing existing facilities. 'Retrofit' means a sustainable urban retrofitting as a directed alteration of the structures, formations and systems of existing facilities to improve energy, water and waste efficiencies. In this study, we applied a hierarchical network design technique that can reflect the structural hierarchy of a city to study how to retrofit public transportation routes in Seoul. The hierarchical network design means dividing the hierarchy according to the functions of hubs and connecting different hierarchies to form a hierarchical network. As a result of comparing the application results of various retrofitting scenarios of public transport, the differences of daily PKT and PHT by about 2.6~3.2% less than before the improvement address that the convenience of passengers is increased. Therefore, it is expected that if the route planning is established according to the proposed method, it will increase the number of passengers and the operational efficiency by the improved convenience of public transit passengers.

키워드

참고문헌

  1. ADB (2010), Retrofitting Sustainable Urban Development Practices: Urban Public Transport, Urban Innovations and Best Practices, 2010.11.
  2. Ajuntament de Barcelona (2014), Pla de Mobilitat Urbana de Barcelona 2013-2018, 290-291.
  3. Andrew F., Jim C. (2015), Suburban Street Storm water Retrofitting, American society of landscape architects.
  4. Bin M. Y., Lee S. J., Jung E. S. (2011), A Study on Travel Pattern Analysis and Political Application Using Transportation Card Data, Policy research, 1-148.
  5. Han J. H., Lee S. J., Kim J. H. (2005), Development of Analysis and Evaluation Model for a Bus Transit Route Network Design, J. Korean Soc. Transp., 23(2), Korean Society of Transportation, 161-172.
  6. Han S. U., Gang H. Y., Lee M. H. (2015), Residential Distribution of Public Transport Commuter by Smart Card through the Use of the Major Subway Influence Area, Korea planing association, 50(4),103-117.
  7. Hasan P., John R. C., Nagarajan V. (1991), The Hierarchical Network Design Problem: A New Formulation and Solution Procedures, Transportation science, 25(3).
  8. John R. C. (1989), The hierarchical network design problem, European Journal of Operational Research, 27(1), 57-66. https://doi.org/10.1016/S0377-2217(86)80007-8
  9. Jung C. Y. (2012), Forecasting GIS Based Bus Demand by Route, University of Seoul, 39-40.
  10. Kim B. I., Lee S. J. (2005), A Dynamic Shortest Path Finding Model Using Hierarchical Road Networks, J. Korean Soc. Transp., 23(6), Korean Society of Transportation, 91-102.
  11. Kim J. Y., Lee S. J., Lee S. H. (2016), An Evacuation Route Choice Model Based on Multi-agent Simulation in Order to Prepare Tsunami Disasters, Transportmetrica B, Transport Dynamics, 1-17.
  12. Kurauchi F., Schmocker J. D., Shimamoto H., Hassan S. M. (2014), Variability of commuters' bus line choice: An analysis of oyster card data, Public Transport, 6(1-2), 21-34. https://doi.org/10.1007/s12469-013-0080-x
  13. Lee S. J. (2011), An Evacuation Route Choice Model Based on Multi Agent Simulation in order to Prepare Tsunami disasters, University of Seoul.
  14. Lee Y. J. (2016), Optimizing Express Bus Route and Operation Scheme With Smart Card Travel Data, Ajou University.
  15. Lim S. S., Kim T. H. (2011), Study for Traffic Congestion Area Definition Method With O/D, RCI and TRI in Incheon City, Transportation Technology and Policy, 8(1), Korean Society of Transportation, 73-82.
  16. Lim Y. T., Park C., Kim D. S., Um J. G., Lee J. (2012), An Estimation of Trip Distribution Model by Using Transit Smart Card Data, Transportation Research, 19(2), 1-11.
  17. Malcolm E., Tim D., Simon L., Miriam H., Simon M., Mike H., Peter G. (2014), Retrofit 2050: Critical Challenges for Urban Transitions, Cardiff University, 2.
  18. Seoul Metropolitan Government (2014), Seoul Metropolitan City 10-Year Urban Railway Basic Plan, 2014.06, 103.
  19. Seoul Metropolitan Government, TOPIS (2015), Establishment of Informatization Strategy Plan for Construction of Transportation Policy Support System, 2015.12.
  20. Seoul Metropolitan Government, Urban Traffic Center (2016), Statistics Related With Transportation, 2016.03.
  21. Sin D. H. (2017), Seoul Metropolitan City Public Transportation Passengers 'Decline' for 2 Consecutive Years, E-news Today, 2017.02.05. and Seoul Statistics, http://stat.seoul.go.kr, 2016.
  22. Thomadsen T., Stidsen T. (2005), The Generalized Fixed-Charge Network Design Problem, Computers and Operations Research, 34(4), 997-1007. https://doi.org/10.1016/j.cor.2005.05.021
  23. Tim D., Malcolm E., Miriam H., Simon L. (2014), Urban Retrofitting for Sustainability, Mapping the Transition to 2050, earthscan From Routledge, 5-6.
  24. Tommy T. (2005), Hierarchical Network Design, PhD thesis, Technical University of Denmark, 2-3.
  25. TRB (2017), 2017 UTC Spotlight Conference: Rebuilding and Retrofitting the Transportation Infrastructure, September 26-27, http://www.cvent.com/events/2017-utc-spotlight-conference-rebuilding-and-retrofitting-the-transportation-infrastructure/event-summary-22fecb37ec1e4ff98492ca869bb4244b.aspx
  26. U. S. Department of Transportation (2014), Transit Safety Retrofit Package Development.
  27. Wang W. (2010), Bus Passenger Origin-destination Estimation and Travel Behavior Using Automated Data Collection Systems in London, UK (Doctoral Dissertation, Massachusetts Institute of Technology).
  28. Yoon H. R. (2012), Development plan of Bus Quasi Public Operating System for Seoul, The Seoul Institute, 5-12.