DOI QR코드

DOI QR Code

Synthetic 3',4'-Dihydroxyflavone Exerts Anti-Neuroinflammatory Effects in BV2 Microglia and a Mouse Model

  • Kim, Namkwon (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Yoo, Hyung-Seok (Department of Pharmacy, College of Pharmacy, Kyung Hee University) ;
  • Ju, Yeon-Joo (Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Oh, Myung Sook (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Lee, Kyung-Tae (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Inn, Kyung-Soo (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Kim, Nam-Jung (Department of Pharmacy, College of Pharmacy, Kyung Hee University) ;
  • Lee, Jong Kil (Department of Pharmacy, College of Pharmacy, Kyung Hee University)
  • Received : 2018.01.12
  • Accepted : 2018.01.23
  • Published : 2018.03.01

Abstract

Neuroinflammation is an immune response within the central nervous system against various proinflammatory stimuli. Abnormal activation of this response contributes to neurodegenerative diseases such as Parkinson disease, Alzheimer's disease, and Huntington disease. Therefore, pharmacologic modulation of abnormal neuroinflammation is thought to be a promising approach to amelioration of neurodegenerative diseases. In this study, we evaluated the synthetic flavone derivative 3',4'-dihydroxyflavone, investigating its anti-neuroinflammatory activity in BV2 microglial cells and in a mouse model. In BV2 microglial cells, 3',4'-dihydroxyflavone successfully inhibited production of chemokines such as nitric oxide and prostaglandin $E_2$ and proinflammatory cytokines such as tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 in BV2 microglia. It also inhibited phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor $(NF)-{\kappa}B$ activation. This indicates that the anti-inflammatory activities of 3',4'-dihydroxyflavone might be related to suppression of the proinflammatory MAPK and $NF-{\kappa}B$ signaling pathways. Similar anti-neuroinflammatory activities of the compound were observed in the mouse model. These findings suggest that 3',4'-dihydroxyflavone is a potential drug candidate for the treatment of microglia-related neuroinflammatory diseases.

Keywords

References

  1. An, J. Y., Lee, H. H., Shin, J. S., Yoo, H. S., Park, J. S., Son, S. H., Kim, S. W., Yu, J., Lee, J., Lee, K. T. and Kim, N. J. (2017) Identification and structure activity relationship of novel flavone derivatives that inhibit the production of nitric oxide and PGE2 in LPS-induced RAW 264.7 cells. Bioorg. Med. Chem. Lett. 27, 2613-2616. https://doi.org/10.1016/j.bmcl.2017.03.057
  2. Bachstetter, A. D. and Van Eldik, L. J. (2010) The p38 MAP kinase family as regulators of proinflammatory cytokine production in degenerative diseases of the CNS. Aging Dis. 1, 199-211.
  3. Biber, K., Moller, T., Boddeke, E. and Prinz, M. (2016) Central nervous system myeloid cells as drug targets: current status and translational challenges. Nat. Rev. Drug Discov. 15, 110-124. https://doi.org/10.1038/nrd.2015.14
  4. Block, M. L. and Hong, J. S. (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76, 77-98. https://doi.org/10.1016/j.pneurobio.2005.06.004
  5. Block, M. L., Zecca, L. and Hong, J. S. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57-69. https://doi.org/10.1038/nrn2038
  6. Bodea, L. G., Wang, Y., Linnartz-Gerlach, B., Kopatz, J., Sinkkonen, L., Musgrove, R., Kaoma, T., Muller, A., Vallar, L., Di Monte, D. A., Balling, R. and Neumann, H. (2014) Neurodegeneration by activation of the microglial complement-phagosome pathway. J. Neurosci. 34, 8546-8556. https://doi.org/10.1523/JNEUROSCI.5002-13.2014
  7. Boje, K. M. (2004) Nitric oxide neurotoxicity in neurodegenerative diseases. Front. Biosci. 9, 763-776. https://doi.org/10.2741/1268
  8. Cherry, J. D., Olschowka, J. A. and O'Banion, M. K. (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation 11, 98. https://doi.org/10.1186/1742-2094-11-98
  9. Chinta, S. J., Ganesan, A., Reis-Rodrigues, P., Lithgow, G. J. and Andersen, J. K. (2013) Anti-inflammatory role of the isoflavone diadzein in lipopolysaccharide-stimulated microglia: implications for Parkinson's disease. Neurotox. Res. 23, 145-153. https://doi.org/10.1007/s12640-012-9328-5
  10. Choi, Y., Lee, M. K., Lim, S. Y., Sung, S. H. and Kim, Y. C. (2009) Inhibition of inducible NO synthase, cyclooxygenase-2 and interleukin-1beta by torilin is mediated by mitogen-activated protein kinases in microglial BV2 cells. Br. J. Pharmacol. 156, 933-940. https://doi.org/10.1111/j.1476-5381.2009.00022.x
  11. Cunningham, C. (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61, 71-90. https://doi.org/10.1002/glia.22350
  12. de Haas, A. H., Boddeke, H. W. and Biber, K. (2008) Region-specific expression of immunoregulatory proteins on microglia in the healthy CNS. Glia 56, 888-894. https://doi.org/10.1002/glia.20663
  13. Kim, D. C., Quang, T. H., Oh, H. and Kim, Y. C. (2017) Steppogenin isolated from cudrania tricuspidata shows antineuroinflammatory effects via NF-${\kappa}B$ and MAPK pathways in lps-stimulated bv2 and primary rat microglial cells. Molecules 22, E2130. https://doi.org/10.3390/molecules22122130
  14. Kim, E. K. and Choi, E. J. (2015) Compromised MAPK signaling in human diseases: an update. Arch. Toxicol. 89, 867-882. https://doi.org/10.1007/s00204-015-1472-2
  15. Kim, S. H., Smith, C. J. and Van Eldik, L. J. (2004) Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol. Aging 25, 431-439. https://doi.org/10.1016/S0197-4580(03)00126-X
  16. Kim, Y. S., Choi, D. H., Block, M. L., Lorenzl, S., Yang, L., Kim, Y. J., Sugama, S., Cho, B. P., Hwang, O., Browne, S. E., Kim, S. Y., Hong, J. S., Beal, M. F. and Joh, T. H. (2007) A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J. 21, 179-187. https://doi.org/10.1096/fj.06-5865com
  17. Lee, J. K., Jin, H. K. and Bae, J. S. (2010) Bone marrow-derived mesenchymal stem cells attenuate amyloid beta-induced memory impairment and apoptosis by inhibiting neuronal cell death. Curr. Alzheimer Res. 7, 540-548.
  18. Lichtenstein, M. P., Carriba, P., Baltrons, M. A., Wojciak-Stothard, B., Peterson, J. R., Garcia, A. and Galea, E. (2010) Secretase-independent and RhoGTPase/PAK/ERK-dependent regulation of cytoskeleton dynamics in astrocytes by NSAIDs and derivatives. J. Alzheimers Dis. 22, 1135-1155.
  19. Liu, S. Y., Xu, P., Luo, X. L., Hu, J. F. and Liu, X. H. (2016) (7R,8S)-Dehydrodiconiferyl alcohol suppresses lipopolysaccharide-induced inflammatory responses in BV2 microglia by inhibiting mapk signaling. Neurochem. Res. 41, 1570-1577. https://doi.org/10.1007/s11064-016-1870-8
  20. Perez-Cano, F. J. and Castell, M. (2016) Flavonoids, inflammation and immune system. Nutrients 8, 659. https://doi.org/10.3390/nu8100659
  21. Polak, P. E., Lin, S. X., Pelligrino, D. and Feinstein, D. L. (2014) The blood-brain barrier-permeable catechol-O-methyltransferase inhibitor dinitrocatechol suppresses experimental autoimmune encephalomyelitis. J. Neuroimmunol. 276, 135-141. https://doi.org/10.1016/j.jneuroim.2014.09.004
  22. Ransohoff, R. M. and Brown, M. A. (2012) Innate immunity in the central nervous system. J. Clin. Invest. 122, 1164-1171. https://doi.org/10.1172/JCI58644
  23. Tai, Y., Qiu, Y. and Bao, Z. (2017) Magnesium lithospermate B suppresses lipopolysaccharide-induced neuroinflammation in BV2 microglial cells and attenuates neurodegeneration in lipopolysaccharide-injected mice. J. Mol. Neurosci. 64, 80-92.
  24. Zeinali, M., Rezaee, S. A. and Hosseinzadeh, H. (2017) An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed. Pharmacother. 92, 998-1009. https://doi.org/10.1016/j.biopha.2017.06.003
  25. Zhang, F. X. and Xu, R. S. (2017) Juglanin ameliorates LPS-induced neuroinflammation in animal models of Parkinson's disease and cell culture via inactivating TLR4/NF-kappaB pathway. Biomed. Pharmacother. 97, 1011-1019.

Cited by

  1. Activation of RIG-I-Mediated Antiviral Signaling Triggers Autophagy Through the MAVS-TRAF6-Beclin-1 Signaling Axis vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.02096
  2. Metal Chelation Therapy and Parkinson’s Disease: A Critical Review on the Thermodynamics of Complex Formation between Relevant Metal Ions and Promising or Established Drugs vol.9, pp.7, 2018, https://doi.org/10.3390/biom9070269
  3. Anti-Inflammatory Effect of Erinacine C on NO Production Through Down-Regulation of NF-κB and Activation of Nrf2-Mediated HO-1 in BV2 Microglial Cells Treated with LPS vol.24, pp.18, 2018, https://doi.org/10.3390/molecules24183317
  4. 3’, 4’-Dihydroxyflavone enhances all-trans retinoic acid-induced superoxide-generating activity through up-regulating transcription of gp91-phox in human monoblastic U937 cells, as opposed vol.8, pp.2, 2018, https://doi.org/10.2131/fts.8.53
  5. Roles of cytochrome P450 2A6 in the oxidation of flavone, 4′-hydroxyflavone, and 4′-, 3′-, and 2′-methoxyflavones by human liver microsomes vol.51, pp.9, 2018, https://doi.org/10.1080/00498254.2021.1950866