References
- Ahmad, A. S., Zhuang, H. and Dore, S. (2006) Heme oxygenase-1 protects brain from acute excitotoxicity. Neuroscience 141, 1703-1708. https://doi.org/10.1016/j.neuroscience.2006.05.035
- Almeida, A. S., Soares, N. L., Vieira, M., Gramsbergen, J. B. and Vieira, H. L. (2016) Carbon Monoxide Releasing Molecule-A1 (CORM-A1) improves neurogenesis: increase of neuronal differentiation yield by preventing cell death. PLoS ONE 11, e0154781. https://doi.org/10.1371/journal.pone.0154781
- Araque, A. (2008) Astrocytes process synaptic information. Neuron Glia Biol. 4, 3-10.
- Argaw, A. T., Asp, L., Zhang, J., Navrazhina, K., Pham, T., Mariani, J. N., Mahase, S., Dutta, D. J., Seto, J., Kramer, E. G., Ferrara, N., Sofroniew, M. V. and John, G. R. (2012) Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J. Clin. Invest. 122, 2454-2468. https://doi.org/10.1172/JCI60842
- Armulik, A., Genove, G., Mae, M., Nisancioglu, M. H., Wallgard, E., Niaudet, C., He, L., Norlin, J., Lindblom, P., Strittmatter, K., Johansson, B. R. and Betsholtz, C. (2010) Pericytes regulate the blood-brain barrier. Nature 468, 557-561. https://doi.org/10.1038/nature09522
- Bauer, I. and Pannen, B. H. (2009) Bench-to-bedside review: Carbon monoxide--from mitochondrial poisoning to therapeutic use. Crit. Care 13, 220. https://doi.org/10.1186/cc7887
- Bell, R. D., Winkler, E. A., Sagare, A. P., Singh, I., LaRue, B., Deane, R. and Zlokovic, B. V. (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409-427. https://doi.org/10.1016/j.neuron.2010.09.043
- Benvenisti-Zarom, L. and Regan, R. F. (2007) Astrocyte-specific heme oxygenase-1 hyperexpression attenuates heme-mediated oxidative injury. Neurobiol. Dis. 26, 688-695. https://doi.org/10.1016/j.nbd.2007.03.006
-
Bilban, M., Bach, F. H., Otterbein, S. L., Ifedigbo, E., d'Avila, J. C., Esterbauer, H., Chin, B. Y., Usheva, A., Robson, S. C., Wagner, O. and Otterbein, L. E. (2006) Carbon monoxide orchestrates a protective response through
$PPAR{\gamma}$ . Immunity 24, 601-610. https://doi.org/10.1016/j.immuni.2006.03.012 - Canto, C., Gerhart-Hines, Z., Feige, J. N., Lagouge, M., Noriega, L., Milne, J. C., Elliott, P. J., Puigserver, P. and Auwerx, J. (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060. https://doi.org/10.1038/nature07813
- Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., Capla, J. M., Galiano, R. D., Levine, J. P. and Gurtner, G. C. (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10, 858-864.
- Chang, E. F., Wong, R. J., Vreman, H. J., Igarashi, T., Galo, E., Sharp, F. R., Stevenson, D. K. and Noble-Haeusslein, L. J. (2003) Heme oxygenase-2 protects against lipid peroxidation-mediated cell loss and impaired motor recovery after traumatic brain injury. J. Neurosci. 23, 3689-3696. https://doi.org/10.1523/JNEUROSCI.23-09-03689.2003
- Chen-Roetling, J., Benvenisti-Zarom, L. and Regan, R. F. (2005) Cultured astrocytes from heme oxygenase-1 knockout mice are more vulnerable to heme-mediated oxidative injury. J. Neurosci. Res. 82, 802-810. https://doi.org/10.1002/jnr.20681
- Chen-Roetling, J. and Regan, R. F. (2006) Effect of heme oxygenase-1 on the vulnerability of astrocytes and neurons to hemoglobin. Biochem. Biophys. Res. Commun. 350, 233-237. https://doi.org/10.1016/j.bbrc.2006.09.036
-
Choi, Y. K., Kim, C. K., Lee, H., Jeoung, D., Ha, K. S., Kwon, Y. G., Kim, K. W. and Kim, Y. M. (2010) Carbon monoxide promotes VEGF expression by increasing HIF-
$1{\alpha}$ protein level via two distinct mechanisms, translational activation and stabilization of HIF-$1{\alpha}$ protein. J. Biol. Chem. 285, 32116-32125. https://doi.org/10.1074/jbc.M110.131284 -
Choi, Y. K., Kim, J. H., Lee, D. K., Lee, K. S., Won, M. H., Jeoung, D., Lee, H., Ha, K. S., Kwon, Y. G. and Kim, Y. M. (2017) Carbon monoxide potentiation of L-type
$Ca^{2+}$ channel activity increases HIF-$1{\alpha}$ -independent VEGF expression via an$AMPK{\alpha}$ /SIRT1-mediated PGC-$1{\alpha}/ERR{\alpha}$ axis. Antioxid. Redox Signal. 27, 21-36. - Choi, Y. K., Maki, T., Mandeville, E. T., Koh, S. H., Hayakawa, K., Arai, K., Kim, Y. M., Whalen, M. J., Xing, C., Wang, X., Kim, K. W. and Lo, E. H. (2016a) Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nat. Med. 22, 1335-1341. https://doi.org/10.1038/nm.4188
-
Choi, Y. K., Park, J. H., Baek, Y. Y., Won, M. H., Jeoung, D., Lee, H., Ha, K. S., Kwon, Y. G. and Kim, Y. M. (2016b) Carbon monoxide stimulates astrocytic mitochondrial biogenesis via L-type
$Ca^{2+}$ channel-mediated PGC-$1{\alpha}/ERR{\alpha}$ activation. Biochem. Biophys. Res. Commun. 479, 297-304. - Chun, Y. J. and Kim, D. (2016) Cancer activation and polymorphisms of human cytochrome P450 1B1. Toxicol. Res. 32, 89-93. https://doi.org/10.5487/TR.2016.32.2.089
- Chung, W. S., Welsh, C. A., Barres, B. A. and Stevens, B. (2015) Do glia drive synaptic and cognitive impairment in disease? Nat. Neurosci. 18, 1539-1545. https://doi.org/10.1038/nn.4142
- Clark, J. E., Naughton, P., Shurey, S., Green, C. J., Johnson, T. R., Mann, B. E., Foresti, R. and Motterlini, R. (2003) Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ. Res. 93, e2-e8. https://doi.org/10.1161/01.RES.0000084381.86567.08
-
Dallas, M. L., Yang, Z., Boyle, J. P., Boycott, H. E., Scragg, J. L., Milligan, C. J., Elies, J., Duke, A., Thireau, J., Reboul, C., Richard, S., Bernus, O., Steele, D. S. and Peers, C. (2012) Carbon monoxide induces cardiac arrhythmia via induction of the late
$Na^+$ current. Am. J. Respir. Crit. Care Med. 186, 648-656. https://doi.org/10.1164/rccm.201204-0688OC - Daneman, R., Zhou, L., Kebede, A. A. and Barres, B. A. (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562-566. https://doi.org/10.1038/nature09513
- Deshane, J., Chen, S., Caballero, S., Grochot-Przeczek, A., Was, H., Li Calzi, S., Lach, R., Hock, T. D., Chen, B., Hill-Kapturczak, N., Siegal, G. P., Dulak, J., Jozkowicz, A., Grant, M. B. and Agarwal, A. (2007) Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. J. Exp. Med. 204, 605-618. https://doi.org/10.1084/jem.20061609
- Ewing, J. F. and Maines, M. D. (1992) In situ hybridization and immunohistochemical localization of heme oxygenase-2 mRNA and protein in normal rat brain: differential distribution of isozyme 1 and 2. Mol. Cell. Neurosci. 3, 559-570. https://doi.org/10.1016/1044-7431(92)90068-D
- Fayad-Kobeissi, S., Ratovonantenaina, J., Dabire, H., Wilson, J. L., Rodriguez, A. M., Berdeaux, A., Dubois-Rande, J. L., Mann, B. E., Motterlini, R. and Foresti, R. (2016) Vascular and angiogenic activities of CORM-401, an oxidant-sensitive CO-releasing molecule. Biochem. Pharmacol. 102, 64-77. https://doi.org/10.1016/j.bcp.2015.12.014
- Fujita, T., Toda, K., Karimova, A., Yan, S. F., Naka, Y., Yet, S. F. and Pinsky, D. J. (2001) Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat. Med. 7, 598-604. https://doi.org/10.1038/87929
- Fukuda, K., Panter, S. S., Sharp, F. R. and Noble, L. J. (1995) Induction of heme oxygenase-1 (HO-1) after traumatic brain injury in the rat. Neurosci. Lett. 199, 127-130. https://doi.org/10.1016/0304-3940(95)12042-3
- Garwood, C. J., Ratcliffe, L. E., Simpson, J. E., Heath, P. R., Ince, P. G. and Wharton, S. B. (2017) Review: astrocytes in Alzheimer's disease and other age-associated dementias: a supporting player with a central role. Neuropathol. Appl. Neurobiol. 43, 281-298.
- Gursoy-Ozdemir, Y., Can, A. and Dalkara, T. (2004) Reperfusion-induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia. Stroke 35, 1449-1453. https://doi.org/10.1161/01.STR.0000126044.83777.f4
- Han, S., Pham, T. V., Kim, J. H., Lim, Y. R., Park, H. G., Cha, G. S., Yun, C. H., Chun, Y. J., Kang, L. W. and Kim, D. (2016) Structural analysis of the Streptomyces avermitilis CYP107W1-oligomycin A complex and role of the tryptophan 178 residue. Mol. Cells 39, 211-216. https://doi.org/10.14348/molcells.2016.2226
-
Hettiarachchi, N., Dallas, M., Al-Owais, M., Griffiths, H., Hooper, N., Scragg, J., Boyle, J. and Peers, C. (2014) Heme oxygenase-1 protects against Alzheimer's amyloid-
${\beta}$ (1-42)-induced toxicity via carbon monoxide production. Cell Death Dis. 5, e1569. https://doi.org/10.1038/cddis.2014.529 - Ikonomovic, M. D., Mi, Z. and Abrahamson, E. E. (2017) Disordered APP metabolism and neurovasculature in trauma and aging: Combined risks for chronic neurodegenerative disorders. Ageing Res. Rev. 34, 51-63. https://doi.org/10.1016/j.arr.2016.11.003
- Jeong, Y. H., Park, J. S., Kim, D. H. and Kim, H. S. (2016) Lonchocarpine increases Nrf2/ARE-mediated antioxidant enzyme expression by modulating AMPK and MAPK signaling in brain astrocytes. Biomol. Ther. (Seoul) 24, 581-588. https://doi.org/10.4062/biomolther.2016.141
- Jin, C. H., So, Y. K., Han, S. N. and Kim, J. B. (2016) Isoegomaketone upregulates heme oxygenase-1 in RAW264.7 cells via ROS/p38 MAPK/Nrf2 pathway. Biomol. Ther. (Seoul) 24, 510-516. https://doi.org/10.4062/biomolther.2015.194
- Kim, J. H., Choi, Y. K., Lee, K. S., Cho, D. H., Baek, Y. Y., Lee, D. K., Ha, K. S., Choe, J., Won, M. H., Jeoung, D., Lee, H., Kwon, Y. G. and Kim, Y. M. (2012) Functional dissection of Nrf2-dependent phase II genes in vascular inflammation and endotoxic injury using Keap1 siRNA. Free Radic. Biol. Med. 53, 629-640 https://doi.org/10.1016/j.freeradbiomed.2012.04.019
- Kim, Y. M., Pae, H. O., Park, J. E., Lee, Y. C., Woo, J. M., Kim, N. H., Choi, Y. K., Lee, B. S., Kim, S. R. and Chung, H. T. (2011) Heme oxygenase in the regulation of vascular biology: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 14, 137-167. https://doi.org/10.1089/ars.2010.3153
- Lancel, S., Hassoun, S. M., Favory, R., Decoster, B., Motterlini, R. and Neviere, R. (2009) Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. J. Pharmacol. Exp. Ther. 329, 641-648. https://doi.org/10.1124/jpet.108.148049
- Lee, S. W., Kim, W. J., Choi, Y. K., Song, H. S., Son, M. J., Gelman, I. H., Kim, Y. J. and Kim, K. W. (2003) SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat. Med. 9, 900-906. https://doi.org/10.1038/nm889
- Li, F. Y., Lam, K. S., Tse, H. F., Chen, C., Wang, Y., Vanhoutte, P. M. and Xu, A. (2012) Endothelium-selective activation of AMP-activated protein kinase prevents diabetes mellitus-induced impairment in vascular function and reendothelialization via induction of heme oxygenase-1 in mice. Circulation 126, 1267-1277. https://doi.org/10.1161/CIRCULATIONAHA.112.108159
-
Li, N., Lu, X., Zhao, X., Xiang, F. L., Xenocostas, A., Karmazyn, M. and Feng, Q. (2009) Endothelial nitric oxide synthase promotes bone marrow stromal cell migration to the ischemic myocardium via upregulation of stromal cell-derived factor-
$1{\alpha}$ . Stem Cells 27, 961-970. https://doi.org/10.1002/stem.6 - Lin, H. H., Chen, Y. H., Yet, S. F. and Chau, L. Y. (2009) After vascular injury, heme oxygenase-1/carbon monoxide enhances re-endothelialization via promoting mobilization of circulating endothelial progenitor cells. J. Thromb. Haemost. 7, 1401-1408. https://doi.org/10.1111/j.1538-7836.2009.03478.x
- Lo, E. H., Broderick, J. P. and Moskowitz, M. A. (2004) tPA and proteolysis in the neurovascular unit. Stroke 35, 354-356. https://doi.org/10.1161/01.STR.0000115164.80010.8A
- Lynch, D. R. and Dawson, T. M. (1994) Secondary mechanisms in neuronal trauma. Curr. Opin. Neurol. 7, 510-516. https://doi.org/10.1097/00019052-199412000-00007
- Maines, M. D. (1997) The heme oxygenase system: a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol. 37, 517-554. https://doi.org/10.1146/annurev.pharmtox.37.1.517
- McCoubrey, W. K., Jr., Huang, T. J. and Maines, M. D. (1997) Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur. J. Biochem. 247, 725-732. https://doi.org/10.1111/j.1432-1033.1997.00725.x
- Mintz-Hittner, H. A., Kennedy, K. A. and Chuang, A. Z. (2011) Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N. Engl. J. Med. 364, 603-615. https://doi.org/10.1056/NEJMoa1007374
- Mobarak, C. D., Anderson, K. D., Morin, M., Beckel-Mitchener, A., Rogers, S. L., Furneaux, H., King, P. and Perrone-Bizzozero, N. I. (2000) The RNA-binding protein HuD is required for GAP-43 mRNA stability, GAP-43 gene expression, and PKC-dependent neurite outgrowth in PC12 cells. Mol. Biol. Cell 11, 3191-3203. https://doi.org/10.1091/mbc.11.9.3191
- Motterlini, R., Clark, J. E., Foresti, R., Sarathchandra, P., Mann, B. E. and Green, C. J. (2002) Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circ. Res. 90, E17-E24. https://doi.org/10.1161/hh0202.104530
- Motterlini, R., Mann, B. E., Johnson, T. R., Clark, J. E., Foresti, R. and Green, C. J. (2003) Bioactivity and pharmacological actions of carbon monoxide-releasing molecules. Curr. Pharm. Des. 9, 2525-2539. https://doi.org/10.2174/1381612033453785
- Motterlini, R. and Otterbein, L. E. (2010) The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. 9, 728-743. https://doi.org/10.1038/nrd3228
- Nada, S. E., Tulsulkar, J. and Shah, Z. A. (2014) Heme oxygenase 1-mediated neurogenesis is enhanced by Ginkgo biloba (EGb 761(R)) after permanent ischemic stroke in mice. Mol. Neurobiol. 49, 945-956. https://doi.org/10.1007/s12035-013-8572-x
- Nelson, C. W., Wei, E. P., Povlishock, J. T., Kontos, H. A. and Moskowitz, M. A. (1992) Oxygen radicals in cerebral ischemia. Am. J. Physiol. 263, H1356-H1362.
- Pae, H. O., Oh, G. S., Choi, B. M., Kim, Y. M. and Chung, H. T. (2005) A molecular cascade showing nitric oxide-heme oxygenase-1-vascular endothelial growth factor-interleukin-8 sequence in human endothelial cells. Endocrinology 146, 2229-2238. https://doi.org/10.1210/en.2004-1431
- Panahian, N., Yoshiura, M. and Maines, M. D. (1999) Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J. Neurochem. 72, 1187-1203.
- Parfenova, H., Basuroy, S., Bhattacharya, S., Tcheranova, D., Qu, Y., Regan, R. F. and Leffler, C. W. (2006) Glutamate induces oxidative stress and apoptosis in cerebral vascular endothelial cells: contributions of HO-1 and HO-2 to cytoprotection. Am. J. Physiol. Cell Physiol. 290, C1399-C1410. https://doi.org/10.1152/ajpcell.00386.2005
- Peers, C. (2012) Modulation of ion channels and transporters by carbon monoxide: causes for concern? Front. Physiol. 3, 477.
- Poss, K. D., Thomas, M. J., Ebralidze, A. K., O’Dell, T. J. and Tonegawa, S. (1995) Hippocampal long-term potentiation is normal in heme oxygenase-2 mutant mice. Neuron 15, 867-873. https://doi.org/10.1016/0896-6273(95)90177-9
- Routtenberg, A., Cantallops, I., Zaffuto, S., Serrano, P. and Namgung, U. (2000) Enhanced learning after genetic overexpression of a brain growth protein. Proc. Natl. Acad. Sci. U.S.A. 97, 7657-7662. https://doi.org/10.1073/pnas.97.13.7657
- Sagare, A. P., Bell, R. D., Zhao, Z., Ma, Q., Winkler, E. A., Ramanathan, A. and Zlokovic, B. V. (2013) Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat. Commun. 4, 2932. https://doi.org/10.1038/ncomms3932
- Scapagnini, G., D'Agata, V., Calabrese, V., Pascale, A., Colombrita, C., Alkon, D. and Cavallaro, S. (2002) Gene expression profiles of heme oxygenase isoforms in the rat brain. Brain Res. 954, 51-59. https://doi.org/10.1016/S0006-8993(02)03338-3
- Semenza, G. L. (2003) Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721-732. https://doi.org/10.1038/nrc1187
- Shinomura, T., Nakao, S. and Mori, K. (1994) Reduction of depolarization-induced glutamate release by heme oxygenase inhibitor: possible role of carbon monoxide in synaptic transmission. Neurosci. Lett. 166, 131-134. https://doi.org/10.1016/0304-3940(94)90468-5
- Snipes, G. J., Chan, S. Y., McGuire, C. B., Costello, B. R., Norden, J. J., Freeman, J. A. and Routtenberg, A. (1987) Evidence for the coidentification of GAP-43, a growth-associated protein, and F1, a plasticity-associated protein. J. Neurosci. 7, 4066-4075. https://doi.org/10.1523/JNEUROSCI.07-12-04066.1987
- Spaide, R. F. and Fisher, Y. L. (2006) Intravitreal bevacizumab (Avastin) treatment of proliferative diabetic retinopathy complicated by vitreous hemorrhage. Retina 26, 275-278. https://doi.org/10.1097/00006982-200603000-00004
- Stone, J., Itin, A., Alon, T., Pe'er, J., Gnessin, H., Chan-Ling, T. and Keshet, E. (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 15, 4738-4747. https://doi.org/10.1523/JNEUROSCI.15-07-04738.1995
- Suliman, H. B., Carraway, M. S., Tatro, L. G. and Piantadosi, C. A. (2007) A new activating role for CO in cardiac mitochondrial biogenesis. J. Cell Sci. 120, 299-308. https://doi.org/10.1242/jcs.03318
- Trakshel, G. M. and Maines, M. D. (1989) Multiplicity of heme oxygenase isozymes. HO-1 and HO-2 are different molecular species in rat and rabbit. J. Biol. Chem. 264, 1323-1328.
- Verma, A., Hirsch, D. J., Glatt, C. E., Ronnett, G. V. and Snyder, S. H. (1993) Carbon monoxide: a putative neural messenger. Science 259, 381-384. https://doi.org/10.1126/science.7678352
- Wang, B., Cao, W., Biswal, S. and Dore, S. (2011) Carbon monoxide-activated Nrf2 pathway leads to protection against permanent focal cerebral ischemia. Stroke 42, 2605-2610. https://doi.org/10.1161/STROKEAHA.110.607101
- Wang, J. and Dore, S. (2008) Heme oxygenase 2 deficiency increases brain swelling and inflammation after intracerebral hemorrhage. Neuroscience 155, 1133-1141.
-
Winkler, E. A., Bell, R. D. and Zlokovic, B. V. (2010) Pericyte-specific expression of PDGF
${\beta}$ receptor in mouse models with normal and deficient PDGF${\beta}$ receptor signaling. Mol. Neurodegener. 5, 32. - Winkler, E. A., Bell, R. D. and Zlokovic, B. V. (2011) Central nervous system pericytes in health and disease. Nat. Neurosci. 14, 1398-1405.
- Winkler, E. A., Sagare, A. P. and Zlokovic, B. V. (2014) The pericyte: a forgotten cell type with important implications for Alzheimer's disease? Brain Pathol. 24, 371-386. https://doi.org/10.1111/bpa.12152
- Wu, M. L., Ho, Y. C. and Yet, S. F. (2011) A central role of heme oxygenase-1 in cardiovascular protection. Antioxid. Redox Signal. 15, 1835-1846.
- Xing, C. and Lo, E. H. (2017) Help-me signaling: Non-cell autonomous mechanisms of neuroprotection and neurorecovery. Prog. Neurobiol. 152, 181-199. https://doi.org/10.1016/j.pneurobio.2016.04.004
- Xiong, Y., Mahmood, A. and Chopp, M. (2013) Animal models of traumatic brain injury. Nat. Rev. Neurosci. 14, 128-142. https://doi.org/10.1038/nrn3407
- Yabluchanskiy, A., Sawle, P., Homer-Vanniasinkam, S., Green, C. J., Foresti, R. and Motterlini, R. (2012) CORM-3, a carbon monoxide-releasing molecule, alters the inflammatory response and reduces brain damage in a rat model of hemorrhagic stroke. Crit. Care Med. 40, 544-552. https://doi.org/10.1097/CCM.0b013e31822f0d64
- Yemisci, M., Gursoy-Ozdemir, Y., Vural, A., Can, A., Topalkara, K. and Dalkara, T. (2009) Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat. Med. 15, 1031-1037.
- Zhang, R., Zhang, L., Zhang, Z., Wang, Y., Lu, M., Lapointe, M. and Chopp, M. (2001) A nitric oxide donor induces neurogenesis and reduces functional deficits after stroke in rats. Ann. Neurol. 50, 602-611. https://doi.org/10.1002/ana.1249
- Zhao, Y., Guan, Y. F., Zhou, X. M., Li, G. Q., Li, Z. Y., Zhou, C. C., Wang, P. and Miao, C. Y. (2015) Regenerative neurogenesis after ischemic stroke promoted by nicotinamide phosphoribosyltransferase-nicotinamide adenine dinucleotide cascade. Stroke 46, 1966-1974. https://doi.org/10.1161/STROKEAHA.115.009216
- Zhuo, M., Small, S. A., Kandel, E. R. and Hawkins, R. D. (1993) Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science 260, 1946-1950. https://doi.org/10.1126/science.8100368
Cited by
- Carbon Monoxide Ameliorates 6-Hydroxydopamine-Induced Cell Death in C6 Glioma Cells vol.26, pp.2, 2018, https://doi.org/10.4062/biomolther.2018.009
- The Heme Oxygenase/Biliverdin Reductase System as Effector of the Neuroprotective Outcomes of Herb-Based Nutritional Supplements vol.10, pp.None, 2018, https://doi.org/10.3389/fphar.2019.01298
- The Role of Astrocytes in the Central Nervous System Focused on BK Channel and Heme Oxygenase Metabolites: A Review vol.8, pp.5, 2019, https://doi.org/10.3390/antiox8050121
- The Emerging Roles of the Gaseous Signaling Molecules NO, H2S, and CO in the Regulation of Stem Cells vol.6, pp.2, 2020, https://doi.org/10.1021/acsbiomaterials.9b01681
- Regenerative Potential of Carbon Monoxide in Adult Neural Circuits of the Central Nervous System vol.21, pp.7, 2018, https://doi.org/10.3390/ijms21072273
- Response of the cerebral vasculature to systemic carbon monoxide administration—Regional differences and sexual dimorphism vol.52, pp.1, 2020, https://doi.org/10.1111/ejn.14725
- Fine Tuning of Cholinesterase and Glutathione-S-Transferase Activities by Organoruthenium(II) Complexes vol.9, pp.9, 2018, https://doi.org/10.3390/biomedicines9091243
- Resistance exercise affects catheter-related thrombosis in rats through miR-92a-3p, oxidative stress and the MAPK/NF-κB pathway vol.21, pp.1, 2018, https://doi.org/10.1186/s12872-021-02233-w