DOI QR코드

DOI QR Code

Comprehensive Analysis of Non-Synonymous Natural Variants of G Protein-Coupled Receptors

  • Received : 2017.03.23
  • Accepted : 2017.07.13
  • Published : 2018.03.01

Abstract

G protein-coupled receptors (GPCRs) are the largest superfamily of transmembrane receptors and have vital signaling functions in various organs. Because of their critical roles in physiology and pathology, GPCRs are the most commonly used therapeutic target. It has been suggested that GPCRs undergo massive genetic variations such as genetic polymorphisms and DNA insertions or deletions. Among these genetic variations, non-synonymous natural variations change the amino acid sequence and could thus alter GPCR functions such as expression, localization, signaling, and ligand binding, which may be involved in disease development and altered responses to GPCR-targeting drugs. Despite the clinical importance of GPCRs, studies on the genotype-phenotype relationship of GPCR natural variants have been limited to a few GPCRs such as b-adrenergic receptors and opioid receptors. Comprehensive understanding of non-synonymous natural variations within GPCRs would help to predict the unknown genotype-phenotype relationship and yet-to-be-discovered natural variants. Here, we analyzed the non-synonymous natural variants of all non-olfactory GPCRs available from a public database, UniProt. The results suggest that non-synonymous natural variations occur extensively within the GPCR superfamily especially in the N-terminus and transmembrane domains. Within the transmembrane domains, natural variations observed more frequently in the conserved residues, which leads to disruption of the receptor function. Our analysis also suggests that only few non-synonymous natural variations have been studied in efforts to link the variations with functional consequences.

Keywords

References

  1. Ahn, K. H., Nishiyama, A., Mierke, D. F. and Kendall, D. A. (2010) Hydrophobic residues in helix 8 of cannabinoid receptor 1 are critical for structural and functional properties. Biochemistry 49, 502-511. https://doi.org/10.1021/bi901619r
  2. Ballesteros, J. A. and Weinstein, H. (1995) [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 25, 366-428.
  3. Boutet, E., Lieberherr, D., Tognolli, M., Schneider, M., Bansal, P., Bridge, A. J., Poux, S., Bougueleret, L. and Xenarios, I. (2016) Uni-ProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: How to use the entry view. Methods Mol. Biol. 1374, 23-54.
  4. Cho, D. I., Beom, S., Van Tol, H. H., Caron, M. G. and Kim, K. M. (2006) Characterization of the desensitization properties of five dopamine receptor subtypes and alternatively spliced variants of dopamine $D_2$ and $D_4$ receptors. Biochem. Biophys. Res. Commun. 350, 634-640. https://doi.org/10.1016/j.bbrc.2006.09.090
  5. Chun, K. S. and Shim, M. (2015) EP2 induces p38 phosphorylation via the activation of Src in HEK 293 cells. Biomol. Ther. (Seoul) 23, 539-548.
  6. Dearry, A., Gingrich, J. A., Falardeau, P., Fremeau, R. T., Jr., Bates, M. D. and Caron, M. G. (1990) Molecular cloning and expression of the gene for a human $D_1$ dopamine receptor. Nature 347, 72-76. https://doi.org/10.1038/347072a0
  7. Drazen, J. M., Silverman, E. K. and Lee, T. H. (2000) Heterogeneity of therapeutic responses in asthma. Br. Med. Bull. 56, 1054-1070. https://doi.org/10.1258/0007142001903535
  8. Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. and Schioth, H. B. (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256-1272. https://doi.org/10.1124/mol.63.6.1256
  9. Hecht, M., Bromberg, Y. and Rost, B. (2013) News from the protein mutability landscape. J. Mol. Biol. 425, 3937-3948. https://doi.org/10.1016/j.jmb.2013.07.028
  10. Insel, P. A., Tang, C. M., Hahntow, I. and Michel, M. C. (2007) Impact of GPCRs in clinical medicine: monogenic diseases, genetic variants and drug targets. Biochim. Biophys. Acta 1768, 994-1005. https://doi.org/10.1016/j.bbamem.2006.09.029
  11. Isberg, V., de Graaf, C., Bortolato, A., Cherezov, V., Katritch, V., Marshall, F. H., Mordalski, S., Pin, J. P., Stevens, R. C., Vriend, G. and Gloriam, D. E. (2015) Generic GPCR residue numbers - aligning topology maps minding the gaps. Trends Pharmacol. Sci. 36, 22-31. https://doi.org/10.1016/j.tips.2014.11.001
  12. Kawasaki, T., Saka, T., Mine, S., Mizohata, E., Inoue, T., Matsumura, H. and Sato, T. (2015) The N-terminal acidic residue of the cytosolic helix 8 of an odorant receptor is responsible for different response dynamics via G-protein. FEBS Lett. 589, 1136-1142. https://doi.org/10.1016/j.febslet.2015.03.025
  13. Kazius, J., Wurdinger, K., van Iterson, M., Kok, J., Back, T. and Ijzerman, A. P. (2008) GPCR NaVa database: natural variants in human G protein-coupled receptors. Hum. Mutat. 29, 39-44. https://doi.org/10.1002/humu.20638
  14. Kimura, M. (1968) Evolutionary rate at the molecular level. Nature 217, 624-626. https://doi.org/10.1038/217624a0
  15. Kuramasu, A., Sukegawa, J., Sato, T., Sakurai, E., Watanabe, T., Yanagisawa, T. and Yanai, K. (2011) The hydrophobic amino acids in putative helix 8 in carboxy-terminus of histamine H3 receptor are involved in receptor-G-protein coupling. Cell Signal. 23, 1843-1849.
  16. Lagerstrom, M. C. and Schioth, H. B. (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7, 339-357. https://doi.org/10.1038/nrd2518
  17. Lee, A., Rana, B. K., Schiffer, H. H., Schork, N. J., Brann, M. R., Insel, P. A. and Weiner, D. M. (2003) Distribution analysis of nonsynonymous polymorphisms within the G-protein-coupled receptor gene family. Genomics 81, 245-248.
  18. Munk, C., Isberg, V., Mordalski, S., Harpsoe, K., Rataj, K., Hauser, A. S., Kolb, P., Bojarski, A. J., Vriend, G. and Gloriam, D. E. (2016) GPCRdb: the G protein-coupled receptor database - an introduction. Br. J. Pharmacol. 173, 2195-2207. https://doi.org/10.1111/bph.13509
  19. Pierce, K. L., Premont, R. T. and Lefkowitz, R. J. (2002) Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639-650.
  20. Pin, J. P., Galvez, T. and Prezeau, L. (2003) Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol. Ther. 98, 325-354. https://doi.org/10.1016/S0163-7258(03)00038-X
  21. Rana, B. K., Shiina, T. and Insel, P. A. (2001) Genetic variations and polymorphisms of G protein-coupled receptors: functional and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 41, 593-624. https://doi.org/10.1146/annurev.pharmtox.41.1.593
  22. Shoichet, B. K. and Kobilka, B. K. (2012) Structure-based drug screening for G-protein-coupled receptors. Trends Pharmacol. Sci. 33, 268-272. https://doi.org/10.1016/j.tips.2012.03.007
  23. Small, K. M., Seman, C. A., Castator, A., Brown, K. M. and Liggett, S. B. (2002) False positive non-synonymous polymorphisms of G-protein coupled receptor genes. FEBS Lett. 516, 253-256. https://doi.org/10.1016/S0014-5793(02)02564-4
  24. Small, K. M., Tanguay, D. A., Nandabalan, K., Zhan, P., Stephens, J. C. and Liggett, S. B. (2003) Gene and protein domain-specific patterns of genetic variability within the G-protein coupled receptor superfamily. Am. J. Pharmacogenomics 3, 65-71. https://doi.org/10.2165/00129785-200303010-00008
  25. Sounier, R., Mas, C., Steyaert, J., Laeremans, T., Manglik, A., Huang, W., Kobilka, B. K., Demene, H. and Granier, S. (2015) Propagation of conformational changes during ${\mu}$-opioid receptor activation. Nature 524, 375-378. https://doi.org/10.1038/nature14680
  26. Stoddard, N. C. and Chun, J. (2015) Promising pharmacological directions in the world of lysophosphatidic acid signaling. Biomol. Ther. (Seoul) 23, 1-11. https://doi.org/10.4062/biomolther.2014.109
  27. Tang, C. M. and Insel, P. A. (2005) Genetic variation in G-protein-coupled receptors - consequences for G-protein-coupled receptors as drug targets. Expert Opin. Ther. Targets 9, 1247-1265. https://doi.org/10.1517/14728222.9.6.1247
  28. Thompson, M. D., Cole, D. E., Capra, V., Siminovitch, K. A., Rovati, G. E., Burnham, W. M. and Rana, B. K. (2014a) Pharmacogenetics of the G protein-coupled receptors. Methods Mol. Biol. 1175, 189-242.
  29. Thompson, M. D., Hendy, G. N., Percy, M. E., Bichet, D. G. and Cole, D. E. (2014b) G protein-coupled receptor mutations and human genetic disease. Methods Mol. Biol. 1175, 153-187.
  30. Wahlestedt, C., Brookes, A. J. and Mottagui-Tabar, S. (2004) Lower rate of genomic variation identified in the trans-membrane domain of monoamine sub-class of Human G-Protein Coupled Receptors: the Human GPCR-DB Database. BMC Genomics 5, 91. https://doi.org/10.1186/1471-2164-5-91
  31. Wang, C., Wu, H., Evron, T., Vardy, E., Han, G. W., Huang, X. P., Hufeisen, S. J., Mangano, T. J., Urban, D. J., Katritch, V., Cherezov, V., Caron, M. G., Roth, B. L. and Stevens, R. C. (2014) Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. Nat. Commun. 5, 4355. https://doi.org/10.1038/ncomms5355
  32. Wootten, D., Simms, J., Miller, L. J., Christopoulos, A. and Sexton, P. M. (2013) Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proc. Natl. Acad. Sci. U.S.A. 110, 5211-5216. https://doi.org/10.1073/pnas.1221585110
  33. Zhang, D., Zhao, Q. and Wu, B. (2015) Structural Studies of G Protein-Coupled Receptors. Mol. Cells 38, 836-842. https://doi.org/10.14348/molcells.2015.0263
  34. Zhang, X., Choi, B. G. and Kim, K. M. (2016) Roles of dopamine $D_2$ receptor subregions in interactions with ${\beta}$-Arrestin2. Biomol. Ther. (Seoul) 24, 517-522. https://doi.org/10.4062/biomolther.2015.198
  35. Zheng, M., Zhang, X., Min, C., Choi, B. G., Oh, I. J. and Kim, K. M. (2016) Functional regulation of dopamine $D_3$ receptor through interaction with PICK1. Biomol. Ther. (Seoul) 24, 475-481. https://doi.org/10.4062/biomolther.2016.015
  36. Zhu, S., Zhang, M., Davis, J. E., Wu, W. H., Surrao, K., Wang, H. and Wu, G. (2015) A single mutation in helix 8 enhances the angiotensin II type 1a receptor transport and signaling. Cell. Signal. 27, 2371-2379. https://doi.org/10.1016/j.cellsig.2015.08.020

Cited by

  1. Meta-Analysis of Genome-Wide Association Studies Identifies Novel Functional CpG-SNPs Associated with Bone Mineral Density at Lumbar Spine vol.2018, pp.2314-4378, 2018, https://doi.org/10.1155/2018/6407257
  2. Integrative genomic analysis predicts novel functional enhancer-SNPs for bone mineral density vol.138, pp.2, 2019, https://doi.org/10.1007/s00439-019-01971-4
  3. G-Protein coupled receptors: structure and function in drug discovery vol.10, pp.60, 2018, https://doi.org/10.1039/d0ra08003a
  4. The mutational landscape of human olfactory G protein-coupled receptors vol.19, pp.1, 2018, https://doi.org/10.1186/s12915-021-00962-0