References
- Ahn, K. H., Nishiyama, A., Mierke, D. F. and Kendall, D. A. (2010) Hydrophobic residues in helix 8 of cannabinoid receptor 1 are critical for structural and functional properties. Biochemistry 49, 502-511. https://doi.org/10.1021/bi901619r
- Ballesteros, J. A. and Weinstein, H. (1995) [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 25, 366-428.
- Boutet, E., Lieberherr, D., Tognolli, M., Schneider, M., Bansal, P., Bridge, A. J., Poux, S., Bougueleret, L. and Xenarios, I. (2016) Uni-ProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: How to use the entry view. Methods Mol. Biol. 1374, 23-54.
-
Cho, D. I., Beom, S., Van Tol, H. H., Caron, M. G. and Kim, K. M. (2006) Characterization of the desensitization properties of five dopamine receptor subtypes and alternatively spliced variants of dopamine
$D_2$ and$D_4$ receptors. Biochem. Biophys. Res. Commun. 350, 634-640. https://doi.org/10.1016/j.bbrc.2006.09.090 - Chun, K. S. and Shim, M. (2015) EP2 induces p38 phosphorylation via the activation of Src in HEK 293 cells. Biomol. Ther. (Seoul) 23, 539-548.
-
Dearry, A., Gingrich, J. A., Falardeau, P., Fremeau, R. T., Jr., Bates, M. D. and Caron, M. G. (1990) Molecular cloning and expression of the gene for a human
$D_1$ dopamine receptor. Nature 347, 72-76. https://doi.org/10.1038/347072a0 - Drazen, J. M., Silverman, E. K. and Lee, T. H. (2000) Heterogeneity of therapeutic responses in asthma. Br. Med. Bull. 56, 1054-1070. https://doi.org/10.1258/0007142001903535
- Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. and Schioth, H. B. (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256-1272. https://doi.org/10.1124/mol.63.6.1256
- Hecht, M., Bromberg, Y. and Rost, B. (2013) News from the protein mutability landscape. J. Mol. Biol. 425, 3937-3948. https://doi.org/10.1016/j.jmb.2013.07.028
- Insel, P. A., Tang, C. M., Hahntow, I. and Michel, M. C. (2007) Impact of GPCRs in clinical medicine: monogenic diseases, genetic variants and drug targets. Biochim. Biophys. Acta 1768, 994-1005. https://doi.org/10.1016/j.bbamem.2006.09.029
- Isberg, V., de Graaf, C., Bortolato, A., Cherezov, V., Katritch, V., Marshall, F. H., Mordalski, S., Pin, J. P., Stevens, R. C., Vriend, G. and Gloriam, D. E. (2015) Generic GPCR residue numbers - aligning topology maps minding the gaps. Trends Pharmacol. Sci. 36, 22-31. https://doi.org/10.1016/j.tips.2014.11.001
- Kawasaki, T., Saka, T., Mine, S., Mizohata, E., Inoue, T., Matsumura, H. and Sato, T. (2015) The N-terminal acidic residue of the cytosolic helix 8 of an odorant receptor is responsible for different response dynamics via G-protein. FEBS Lett. 589, 1136-1142. https://doi.org/10.1016/j.febslet.2015.03.025
- Kazius, J., Wurdinger, K., van Iterson, M., Kok, J., Back, T. and Ijzerman, A. P. (2008) GPCR NaVa database: natural variants in human G protein-coupled receptors. Hum. Mutat. 29, 39-44. https://doi.org/10.1002/humu.20638
- Kimura, M. (1968) Evolutionary rate at the molecular level. Nature 217, 624-626. https://doi.org/10.1038/217624a0
- Kuramasu, A., Sukegawa, J., Sato, T., Sakurai, E., Watanabe, T., Yanagisawa, T. and Yanai, K. (2011) The hydrophobic amino acids in putative helix 8 in carboxy-terminus of histamine H3 receptor are involved in receptor-G-protein coupling. Cell Signal. 23, 1843-1849.
- Lagerstrom, M. C. and Schioth, H. B. (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7, 339-357. https://doi.org/10.1038/nrd2518
- Lee, A., Rana, B. K., Schiffer, H. H., Schork, N. J., Brann, M. R., Insel, P. A. and Weiner, D. M. (2003) Distribution analysis of nonsynonymous polymorphisms within the G-protein-coupled receptor gene family. Genomics 81, 245-248.
- Munk, C., Isberg, V., Mordalski, S., Harpsoe, K., Rataj, K., Hauser, A. S., Kolb, P., Bojarski, A. J., Vriend, G. and Gloriam, D. E. (2016) GPCRdb: the G protein-coupled receptor database - an introduction. Br. J. Pharmacol. 173, 2195-2207. https://doi.org/10.1111/bph.13509
- Pierce, K. L., Premont, R. T. and Lefkowitz, R. J. (2002) Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639-650.
- Pin, J. P., Galvez, T. and Prezeau, L. (2003) Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol. Ther. 98, 325-354. https://doi.org/10.1016/S0163-7258(03)00038-X
- Rana, B. K., Shiina, T. and Insel, P. A. (2001) Genetic variations and polymorphisms of G protein-coupled receptors: functional and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 41, 593-624. https://doi.org/10.1146/annurev.pharmtox.41.1.593
- Shoichet, B. K. and Kobilka, B. K. (2012) Structure-based drug screening for G-protein-coupled receptors. Trends Pharmacol. Sci. 33, 268-272. https://doi.org/10.1016/j.tips.2012.03.007
- Small, K. M., Seman, C. A., Castator, A., Brown, K. M. and Liggett, S. B. (2002) False positive non-synonymous polymorphisms of G-protein coupled receptor genes. FEBS Lett. 516, 253-256. https://doi.org/10.1016/S0014-5793(02)02564-4
- Small, K. M., Tanguay, D. A., Nandabalan, K., Zhan, P., Stephens, J. C. and Liggett, S. B. (2003) Gene and protein domain-specific patterns of genetic variability within the G-protein coupled receptor superfamily. Am. J. Pharmacogenomics 3, 65-71. https://doi.org/10.2165/00129785-200303010-00008
-
Sounier, R., Mas, C., Steyaert, J., Laeremans, T., Manglik, A., Huang, W., Kobilka, B. K., Demene, H. and Granier, S. (2015) Propagation of conformational changes during
${\mu}$ -opioid receptor activation. Nature 524, 375-378. https://doi.org/10.1038/nature14680 - Stoddard, N. C. and Chun, J. (2015) Promising pharmacological directions in the world of lysophosphatidic acid signaling. Biomol. Ther. (Seoul) 23, 1-11. https://doi.org/10.4062/biomolther.2014.109
- Tang, C. M. and Insel, P. A. (2005) Genetic variation in G-protein-coupled receptors - consequences for G-protein-coupled receptors as drug targets. Expert Opin. Ther. Targets 9, 1247-1265. https://doi.org/10.1517/14728222.9.6.1247
- Thompson, M. D., Cole, D. E., Capra, V., Siminovitch, K. A., Rovati, G. E., Burnham, W. M. and Rana, B. K. (2014a) Pharmacogenetics of the G protein-coupled receptors. Methods Mol. Biol. 1175, 189-242.
- Thompson, M. D., Hendy, G. N., Percy, M. E., Bichet, D. G. and Cole, D. E. (2014b) G protein-coupled receptor mutations and human genetic disease. Methods Mol. Biol. 1175, 153-187.
- Wahlestedt, C., Brookes, A. J. and Mottagui-Tabar, S. (2004) Lower rate of genomic variation identified in the trans-membrane domain of monoamine sub-class of Human G-Protein Coupled Receptors: the Human GPCR-DB Database. BMC Genomics 5, 91. https://doi.org/10.1186/1471-2164-5-91
- Wang, C., Wu, H., Evron, T., Vardy, E., Han, G. W., Huang, X. P., Hufeisen, S. J., Mangano, T. J., Urban, D. J., Katritch, V., Cherezov, V., Caron, M. G., Roth, B. L. and Stevens, R. C. (2014) Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. Nat. Commun. 5, 4355. https://doi.org/10.1038/ncomms5355
- Wootten, D., Simms, J., Miller, L. J., Christopoulos, A. and Sexton, P. M. (2013) Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proc. Natl. Acad. Sci. U.S.A. 110, 5211-5216. https://doi.org/10.1073/pnas.1221585110
- Zhang, D., Zhao, Q. and Wu, B. (2015) Structural Studies of G Protein-Coupled Receptors. Mol. Cells 38, 836-842. https://doi.org/10.14348/molcells.2015.0263
-
Zhang, X., Choi, B. G. and Kim, K. M. (2016) Roles of dopamine
$D_2$ receptor subregions in interactions with${\beta}$ -Arrestin2. Biomol. Ther. (Seoul) 24, 517-522. https://doi.org/10.4062/biomolther.2015.198 -
Zheng, M., Zhang, X., Min, C., Choi, B. G., Oh, I. J. and Kim, K. M. (2016) Functional regulation of dopamine
$D_3$ receptor through interaction with PICK1. Biomol. Ther. (Seoul) 24, 475-481. https://doi.org/10.4062/biomolther.2016.015 - Zhu, S., Zhang, M., Davis, J. E., Wu, W. H., Surrao, K., Wang, H. and Wu, G. (2015) A single mutation in helix 8 enhances the angiotensin II type 1a receptor transport and signaling. Cell. Signal. 27, 2371-2379. https://doi.org/10.1016/j.cellsig.2015.08.020
Cited by
- Meta-Analysis of Genome-Wide Association Studies Identifies Novel Functional CpG-SNPs Associated with Bone Mineral Density at Lumbar Spine vol.2018, pp.2314-4378, 2018, https://doi.org/10.1155/2018/6407257
- Integrative genomic analysis predicts novel functional enhancer-SNPs for bone mineral density vol.138, pp.2, 2019, https://doi.org/10.1007/s00439-019-01971-4
- G-Protein coupled receptors: structure and function in drug discovery vol.10, pp.60, 2018, https://doi.org/10.1039/d0ra08003a
- The mutational landscape of human olfactory G protein-coupled receptors vol.19, pp.1, 2018, https://doi.org/10.1186/s12915-021-00962-0