DOI QR코드

DOI QR Code

인공 신경망 모델을 활용한 조미니 곡선 예측

Prediction of Jominy Curve using Artificial Neural Network

  • 이운재 (전북대학교 신소재공학부) ;
  • 이석재 (전북대학교 신소재공학부)
  • Lee, Woonjae (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Lee, Seok-Jae (Division of Advanced Materials Engineering, Chonbuk National University)
  • 투고 : 2017.12.08
  • 심사 : 2017.12.22
  • 발행 : 2018.01.30

초록

This work demonstrated the application of an artificial neural network model for predicting the Jominy hardness curve by considering 13 alloying elements in low alloy steels. End-quench Jominy tests were carried out according to ASTM A255 standard method for 1197 samples. The hardness values of Jominy sample were measured at different points from the quenched end. The developed artificial neural network model predicted the Jominy curve with high accuracy ($R^2=0.9969$ for training and $R^2=0.9956$ for verification). In addition, the model was used to investigate the average sensitivity of input variables to hardness change.

키워드

참고문헌

  1. A255/99, Standard test method for determining hardenability of steels, ASTM International, 1999.
  2. SEP 1664 - Derivation of equations by multiple regression for the calculation of hardenability in the Jominey end quench test on the basis of the chemical composition of steels, Dusseldorf: Verlag Stahleisen GmbH, 2004.
  3. A. Zehtab Yazdi, S. A. Sajjadi, S. M. Zebarjad, and S. M. Moosavi Nezhad : Journal of Materials Processing Technology, 199 (2008) 124 https://doi.org/10.1016/j.jmatprotec.2007.08.035
  4. D. S. MacKenzie and J. W. Newkirk : Proceedings of the 8th Seminar of the International Federation for Heat Treatment and Surface Engineering, Dubrovnik, Croatia (2001) 139.
  5. J. S. Kirkaldy : Metallurgical Transactions A, 4 (1973) 2327. https://doi.org/10.1007/BF02669371
  6. A. Sugianto, M. Narazaki, M. Kogawara, and A. Shirayori : Proceedings of the 8th Asia-Pacific Conference on Materials Processing, Guilin-Guangzhou, China (2008) 883.
  7. H. K. D. H. Bhadeshia : ISIJ International, 39 (1999) 966. https://doi.org/10.2355/isijinternational.39.966
  8. W. Sha and K. L. Edwards : Materials & Design, 28 (2007) 1747. https://doi.org/10.1016/j.matdes.2007.02.009
  9. W. G. Vermeulen, P. J. van der Wolk, A. P. de Weijer, and S. van der Zwaag : Journal of Materials Engineering and Performance, 5 (1996) 57. https://doi.org/10.1007/BF02647270
  10. L. A. Dobrzanski and W. Sitek : Journal of Materials Processing Technology, 78 (1998) 59. https://doi.org/10.1016/S0924-0136(97)00464-0
  11. X. Gao, K. Qi, T. Deng, C. Qiu, P. Zhou, and X. Du : Journal of Iron and Steel Research, International, 13 (2006) 71. https://doi.org/10.1016/S1006-706X(06)60114-3
  12. T. K. Ho : Ph.D. dissertation, Iowa State University (1978).
  13. A. Jacobs and G. Krauss : Journal of Heat Treating, 2 (1981) 139. https://doi.org/10.1007/BF02833230
  14. J. Sojka, P. Betakova, L. Hyspecka, L. Cizek, M. SozaEska, and A. Hernas : Proceedings of the 12th International Scientific Conference on Achievements in Mechanical and Materials Engineering, Gliwice- Cracow-Zakopane, Poland (2003) 821.
  15. H. K. D. H. Bhadeshia : ISIJ International, 39 (1999) 966. https://doi.org/10.2355/isijinternational.39.966
  16. W. Sha and K. L. Edwards : Materials & Design, 28 (2007) 1747. https://doi.org/10.1016/j.matdes.2007.02.009
  17. D. Dunne, H. Tsuei, and Z. Sterjovski : ISIJ International, 44 (2004) 1599. https://doi.org/10.2355/isijinternational.44.1599
  18. S. J. Lee and Y. K. Lee : Acta Materialia, 56 (2008) 1482. https://doi.org/10.1016/j.actamat.2007.11.039
  19. S. J. Lee : ISIJ International, 53 (2013) 1902. https://doi.org/10.2355/isijinternational.53.1902
  20. B. Hwang, D. W. Suh, and S. J. Kim : Scripta Materialia, 64 (2011) 1118. https://doi.org/10.1016/j.scriptamat.2011.03.003