• Title/Summary/Keyword: Jominy curve

Search Result 3, Processing Time 0.022 seconds

Prediction of Jominy Curve using Artificial Neural Network (인공 신경망 모델을 활용한 조미니 곡선 예측)

  • Lee, Woonjae;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • This work demonstrated the application of an artificial neural network model for predicting the Jominy hardness curve by considering 13 alloying elements in low alloy steels. End-quench Jominy tests were carried out according to ASTM A255 standard method for 1197 samples. The hardness values of Jominy sample were measured at different points from the quenched end. The developed artificial neural network model predicted the Jominy curve with high accuracy ($R^2=0.9969$ for training and $R^2=0.9956$ for verification). In addition, the model was used to investigate the average sensitivity of input variables to hardness change.

Calculation of Jominy Hardenability Curve of Low Alloy Steels from TTT/CCT data (TTT/CCT 데이터를 이용한 저합금강의 죠미니 경화능 곡선 계산)

  • Jung, Minsu;Son, YoonHo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.1
    • /
    • pp.17-28
    • /
    • 2019
  • Jominy hardenability curves of low alloy steel containing less than 5 wt.% of alloying elements in total were calculated by applying Scheil's rule of additivity to pre-calculated isothermal transformation curve. Isothermal transformation curve for each phase in steel was approximated as a simple mathematical equation by using Kirkaldy's approach and all coefficients in the equation were estimated from experimental temperature-time-transformation (TTT) and/or continuous cooling transformation (CCT) data in the literature. Then jominy test with simple boundary conditions was performed in computer by applying the finite difference scheme. The resultant cooling curves at each location along a longitudinal direction of Jominy bar were applied to calculate phase fractions as well as mechanical properties such as micro Vickers hardness. The simulated results were compared with experimental CCT data and Jominy curves in the literature.

Impact toughness improvement of an undercarriage track shoe using the Taguchi orthogonal array experiment (다구찌 직교배열 실험을 이용한 무한궤도용 트랙 슈의 충격인성 향상 연구)

  • Kim, Young Suk;Chang, Keun Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1611-1619
    • /
    • 2015
  • This study examined the toughness improvement of a track shoe used as the undercarriage of excavator and bulldozer parts. The excavator is operated under poor conditions, such as the build-up field and quarry. Therefore, the track shoe requires high strength and impact toughness to endure immense shock while at work. The track shoe was made of heat treated boron steel. The sufficient possibility of hardenability with the theoretical Jominy curve for boron steel was confirmed while quenching. The Taguchi orthogonal array experiment method was used to optimize the process variables, such as area reduction ratio and heat treatment conditions (tempering temperature and holding time), to achieve toughness improvement. The toughness of the track shoe increased with increasing area reduction, and a tempering temperature of $210^{\circ}C$ and a tempering time of 80 min are beneficial for improving the toughness of the track shoe.