DOI QR코드

DOI QR Code

한반도 토양수분 상태 모니터링을 위한 천리안 정지궤도 위성 기반 건조 지수 산정

Estimation of dryness index based on COMS to monitoring the soil moisture status at the Korean peninsula

  • 정재환 (성균관대학교 수자원전문대학원) ;
  • 백종진 (성균관대학교 건설환경연구소) ;
  • 최민하 (성균관대학교 수자원전문대학원)
  • Jeong, Jaehwan (Department of Water Resources, Sungkyunkwan University) ;
  • Baik, Jongjin (Center for Built Environment, Sungkyunkwan University) ;
  • Choi, Minha (Department of Water Resources, Sungkyunkwan University)
  • 투고 : 2017.10.18
  • 심사 : 2017.11.22
  • 발행 : 2018.02.28

초록

위성자료는 광범위한 지역의 변동성을 관측하기에 매우 유리하다는 특성 때문에 최근 기후변화로 인한 자연재해 등의 연구에서 각광받고 있다. 하지만 위성자료에도 여전히 시 공간적인 해상도의 한계가 있으며, 이를 극복하기 위해 다양한 센서의 융합이나 1차 산출물들을 조합하는 방법을 사용한다. 본 연구에서는 천리안 위성의 GOCI와 MI에서 관측되는 자료를 융합함으로써 500 m 공간 해상도의 지표면 온도 자료를 생산하였고, 정규 식생지수와 함께 사용하여 TVDI를 산정하였다. 산정된 TVDI를 통해 한반도의 토양수분 상태를 모니터링 하고자 하였으며, 이를 비교하기 위해 ASCAT 지표 토양수분 자료를 통해 산정된 SSMI와 비교하였다. 그 결과 천리안 TVDI와 SSMI가 대한민국 전역에서 비슷한 공간 분포를 나타냈으며, 천리안 위성을 활용하여 토양수분을 관측할 수 있는 가능성을 제시하였다. 따라서 본 연구에서 산정 된 한반도의 TVDI가 고해상도의 토양수분을 산정하는 기반이 될 수 있고, 이를 통해 천리안 위성의 활용 범위가 보다 확장되어 다양한 연구의 기반이 될 수 있을 것으로 보인다.

Satellite data have attracted attention on research such as natural disaster and climate changes because satellite data is very advantageous for observing a wide range of variability. However, there are still limited spatial and temporal resolutions in satellite data. To overcome these limitations, fusion of various sensors and combination of primary products are used. In this study, surface temperature data of 500 m spatial resolution was produced by fusion of GOCI and MI data of COMS. Also these LST are used with NDVI for estimating TVDI. Soil moisture condition of the Korean peninsula was evaluated by these TVDI and it was compared with SSMI derived from ASCAT surface soil moisture data. As a result, COMS TVDI and ASCAT SSMI showed similar spatial distribution and suggested the possibility of observing the soil moisture using COMS. Therefore, the TVDI estimations can be used as a basis for estimating the high resolution soil moisture, and the application of the COMS can be expanded for various studies.

키워드

참고문헌

  1. Ahn, J. B., and Kim, H. J. (2010). "Characteristics of monsoon climate in the Korean peninsula." Journal of Climate Research, Vol. 5, No. 2, pp. 91-99.
  2. Baek, J. J., and Choi, M. (2012). "Availability of land surface temperature from the COMS in the Korea peninsula." Journal of Korea Water Resources Association, Vol. 45, No. 8, pp. 755-765. https://doi.org/10.3741/JKWRA.2012.45.8.755
  3. Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martínez-Fernandez, J., Llorens, P., Latron, J., Martin, C., and Bittelli, M. (2011). "Soil moisture estimation through ASCAT and AMSR-E sensor: an intercomparison and validation study across Europe." Remote Sensing of Environment, Vol. 115, No. 12, pp. 3390-3408. https://doi.org/10.1016/j.rse.2011.08.003
  4. Brocca, L., Morbidelli, R., Melone, F., and Moranarco, T. (2007). "Soil moisture spatial variability in experimental areas of central Italy." Journal of Hydrology, Vol. 333, No. 2-4, pp. 356-373. https://doi.org/10.1016/j.jhydrol.2006.09.004
  5. Cho, E., Choi, M., and Wagner, W. (2015). "An assessment of remotely sensed surface and root zone soil moisture through active and passive sensors in northeast Asia." Remote Sensing of Environment, Vol. 160, pp. 166-179. https://doi.org/10.1016/j.rse.2015.01.013
  6. Crow, W. T., Berg, A. A., Cosh, M. H., Loew, A., Mohanty, B. P., Panciera, R., de Rosnay, P., Ryu, D., and Walker, J. P. (2012). "Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products." Reviews of Geophysics, Vol. 50, No, 2, RG2002, doi: 10.1029/2011RG000372.
  7. Eidenshink, J. C., and Faundeen, J. L. (1994). "The 1 km AVHRR global land data set: first stages in implementation." International Journal of Remote Sensing, Vol. 15, No. 17, pp. 257-277.
  8. Jeong, J., Baik, J., and Choi, M. (2017). "Downscaling of land surface temperature by combining communication, ocean and meteorological satellite." Journal of Wetlands Research, Vol. 19, No. 1, pp. 122-131. https://doi.org/10.17663/JWR.2017.19.1.122
  9. Jin, K. W., Ju, G, H., and Yang, K. H. (2008). "Calibration and processing of COMS MI data." Journal of Korean Meteorological Society Conference, Vol. 2008, No. 10, pp. 404-405.
  10. Kim, G. S., and Park, H. G. (2010). "Estimation of drought index using CART algorithm and satellite data." Journal of the Korean Association of Geographic Information Studies, Vol. 13, No. 1, pp. 128-141.
  11. Kim, J. S., and Yoon, I. H. (2014). "Study on the prediction of turning point of typhoon tracks using COMS water vapor images." Journal of the Korean Earth Science Society, Vol. 35, No. 3, pp. 168-179. https://doi.org/10.5467/JKESS.2014.35.3.168
  12. Lee, Y. G., Jung, C. G., Lee, J. W., and Kim, S. J. (2016). "A study on establishment of appropriate observation time for estimation of daily land surface temperature using COMS in Korea peninsula." Journal of the Korean Society of Agricultural Engineers, Vol. 58, No. 4, pp. 37-46. https://doi.org/10.5389/KSAE.2016.58.4.037
  13. Leng, P., Song, X., Duan, S. B., and Li, Z. L. (2017). "Generation of continuous surface soil moisture dataset using combined optical and thermal infrared images." Hydrological Processes, Vol. 31, No. 6, pp. 1398-1407. https://doi.org/10.1002/hyp.11113
  14. Liu, L., Liao, J., Chen, X., Zhou, G., Su, Y., Xiang, Z., Wang, Z., Liu, X., Li, Y., Wu, J., Xiong, X., and Shao, H.. (2017). "The Microwave Temperature Vegetation Drought Index (MTVDI) based on AMSR-E brightness temperatures for long-term drought assessment across China (2003-2010)." Remote Sensing of Environment, Vol. 199, pp. 302-320. https://doi.org/10.1016/j.rse.2017.07.012
  15. Lunetta, R. S., Knight, J. F., Ediriwickrema, J., Lyon, J. G., Worthy, L. D. (2006). "Land-cover change detection using multi-temporal MODIS NDVI data." Remote Sensing of Environment, Vol. 105, No. 2, pp. 142-154. https://doi.org/10.1016/j.rse.2006.06.018
  16. Maeda, E. E. (2014). "Downscaling MODIS LST in the East African mountains using elevation gradient and land-cover information." International Journal of Remote Sensing, Vol. 35, No. 9, pp. 3094-3108. https://doi.org/10.1080/01431161.2014.903442
  17. Moon, H., and Choi, M. (2015). "Dryness indices based on remotely sensed vegetation and land surface temperature for evaluating the soil moisture status in cropland-forest-dominant watersheds." Terrestrial, Atmospheric and Ceanic Sciences, Vol. 26, No. 5, pp. 599-611. https://doi.org/10.3319/TAO.2015.04.22.01(Hy)
  18. Moran, M. S., Clarke, T. R., Inoue, Y., and Vidal, A. (1994). "Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index." Remote Sensing of Environment, Vol. 49, No. 3, pp. 246-263. https://doi.org/10.1016/0034-4257(94)90020-5
  19. Park, J. K., Kim, B. S., Oh, S. Y., and Park, J. H. (2013). "Applicability of vegetation indices from Terra MODIS and COMS GOCI imageries." Journal of the Korean Society of Agricultural Engineers, Vol. 55, No. 6, pp. 47-55. https://doi.org/10.5389/KSAE.2013.55.6.047
  20. Park, J., Baik, J., Kim, S. J., and Choi, M. (2014). "Application of normalized vegetation index for estimating hydrological factors in the Korea peninsula from COMS." Journal of Korea Water Resources Association, Vol. 47, No. 10, pp. 935-943. https://doi.org/10.3741/JKWRA.2014.47.10.935
  21. Sandholt, I., Rasmussen, K., and Andersen, J. (2002). "A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status." Remote Sensing of Environment, Vol. 79, No. 2-3, pp. 213-224. https://doi.org/10.1016/S0034-4257(01)00274-7
  22. Sun, D., and Kafatos, M. (2007). "Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America." Geophysical Research Letters, Vol. 34, No. 24, L24406. https://doi.org/10.1029/2007GL031485
  23. Vachaud, G., Passerat, S. A., Balabanis, P., Vauclin, M. (1985). "Temporal stability of spatially measured soil water probability density function." Soil Science Society of America Journal, Vol. 49, No. 4, pp. 822-828. https://doi.org/10.2136/sssaj1985.03615995004900040006x
  24. Vanderlinden, K., Vereecken, H., Hardelauf, H., Herbst, M., Martinez, G., Cosh, M. H., and Pachepsky, Y. A. (2012). "Temporal stability of soil water contents: a review of data and analyses." Vadose Zone Journal, Vol. 11, No. 4.
  25. Western, A. W., Zhou, S.-L., Grayson, R. B., McMahon, T. A., Bloschl, G., and Wilson, D. J. (2004). "Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes." Journal of Hydrology, Vol. 286, No. 1-4, pp. 113-134. https://doi.org/10.1016/j.jhydrol.2003.09.014
  26. Yang, C. S., Bae, S. S., Han, H. J., Cho, S. I., and Ahn, Y. H. (2009). "Introduction to GOCI data, that is firstly geostationary ocean color observation sensor." Journal of the Korean Society of Marine Environment and Safety, Vol. 2009, No. 11, pp. 135-140.