DOI QR코드

DOI QR Code

봉상형 육티탄산칼륨(K2Ti6O13) 제조 및 형상제어

Synthesis and Morphology Control of Rod Shaped Potassium Hexatitanate

  • 이총민 (한국지질자원연구원 자원활용연구센터) ;
  • 장한권 (한국지질자원연구원 자원활용연구센터) ;
  • 장희동 (한국지질자원연구원 자원활용연구센터)
  • Lee, Chongmin (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Chang, Hankwon (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Jang, Hee Dong (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2018.12.05
  • 심사 : 2018.12.22
  • 발행 : 2018.12.31

초록

Rod shaped Potassium hexatitanate ($K_2Ti_6O_{13}$) was synthesized from colloidal mixture of $TiO_2$, KOH and graphene oxide (GO) by aerosol spray drying and post heat treatment. Firstly, $TiO_2-KOH-GO$ composites were fabricated by aerosol spray drying in argon atmosphere. The composites were then calcined to form a rod shaped morphology of potassium titanate (KTO) in the presence of graphene at $900^{\circ}C$ for 3 h in argon atmosphere. Finally, the rod shaped KTO was obtained after removal of graphene (GR) at $800^{\circ}C$ and 3 h in air atmosphere. Characterization of the synthesized $K_2Ti_6O_{13}$ was carried out using the XRD, BET and FE-SEM. The length and diameter of the synthesized $K_2Ti_6O_{13}$ could be controlled by weight fraction of GO in the aerosol precursor. The length of $K_2Ti_6O_{13}$ rod increased with decreasing its diameter as GO concentration increased. The aspect ratio of the synthesized $K_2Ti_6O_{13}$ rod was controlled from 5 to 13.

키워드

KKOSBF_2018_v14n4_145_f0001.png 이미지

Fig. 1. Schematic illustration of the fabrication process for rod shaped K2Ti6O13.

KKOSBF_2018_v14n4_145_f0002.png 이미지

Fig. 2. X-ray diffraction patterns of the GR/K2Ti6O13 fabricated at different concentration of graphene oxide at 900℃ in Ar atmosphere.

KKOSBF_2018_v14n4_145_f0003.png 이미지

Fig. 3. X-ray diffraction patterns of the K2Ti6O13 fabricated at different concentration of graphene oxide at 800℃ in air atmosphere.

KKOSBF_2018_v14n4_145_f0004.png 이미지

Fig. 4. FE-SEM images of the rod shaped K2Ti6O13 prepared at different concentration of graphene oxide: (a) 0%; (b) 5%; (c) 30%.

KKOSBF_2018_v14n4_145_f0005.png 이미지

Fig. 5. Aspect ratio of the rod shaped K2Ti6O13 prepared at different concentration of graphene oxide: (a) 0%; (b) 5%; (c) 30%.

KKOSBF_2018_v14n4_145_f0006.png 이미지

Fig. 6. Average aspect ratio of the rod shaped K2Ti6O13 prepared at different concentration of graphene oxide

KKOSBF_2018_v14n4_145_f0007.png 이미지

Fig. 7. Specific surface area of the rod shaped K2Ti6O13 prepared at different concentration of graphene oxide

참고문헌

  1. Bao, N. Z., Feng, X., Lu, X. H., Shen, L. M., and Yanagisawa, K. (2004). Low-temperature controllable calcination syntheses of potassium dititanate, AIChE Journal, 50, 1568-1577. https://doi.org/10.1002/aic.10167
  2. Bao, N. Z., Shen, L. M., Feng, X., and Lu, X. H. (2004). High quality and yield in potassium titanate whiskers synthesized by calcination from hydrous titania, Journal of the American Ceramic Society, 87, 326-330. https://doi.org/10.1111/j.1551-2916.2004.00326.x
  3. Cao, Y., Zhu, K. J., Wu, Q. L., Gu, Q. L., and Qiu, J. H. (2014). Hydrothermally synthesized barium titanate nanostructures from $K_2Ti_4O_9$ precursors, morphology evolution and its growth mechanism, Materials Research Bulletin, 57, 162-169. https://doi.org/10.1016/j.materresbull.2014.05.043
  4. Choy, J. H., Han, Y. S., and Song, S. W. (1993). Flux melting route to 2-and 3-dimensional fibrous potassium titanates, $K_2Ti_2nO_{4n+1}$ (n = 2 and 3), Journal of the Korean Chemical Society, 37, 765.
  5. Endo, T., Nagayama, H., Sato, T., and Shimada, M. (1986). Crystal-growth of potassium titanates in the system $K_2O-Fe_2O_3-TiO_2$, Journal of Crystal Growth, 78, 423-430. https://doi.org/10.1016/0022-0248(86)90142-9
  6. Gorokhovsky, A. V., Escalante-Garcia, J. I., Sanchez-Monjaras, T., and Gutierrez-Chavarria, C. A. (2004). Synthesis of potassium polytitanate precursors by treatment of $TiO_2$ with molten mixtures of $KNO_3$ and KOH, Journal of the European Ceramic Society, 24, 3541-3546. https://doi.org/10.1016/j.jeurceramsoc.2003.12.006
  7. Kang, D. G., and Song, J. T. (1995). Synthesis of potassium titanate by wet process, Journal of the Korean Crystal Growth and Crystal Technology, 5, 278-283.
  8. Lee, C., Chang, H., and Jang, H. D. (2017). Eco-friendly synthesis of rod-like potassium hexatitanate particles, Particle and Aerosol Research, 115, 331-337.
  9. Lee, J. K., Lee, K. H., and Kim, H. (1996). Microstructural evolution of potassium titanate whiskers during the synthesis by the calcination and slow-cooling method, Journal of Materials Science, 31, 5493-5498. https://doi.org/10.1007/BF01159322
  10. Liu, Y. M., Qi, T., and Zhang, Y. (2006). A novel way to synthesize potassium titanates, Materials Letters, 60, 203-205. https://doi.org/10.1016/j.matlet.2005.08.017
  11. Luo, R. Y., Ni, Y. F., Li, J. S., Yang, C. L., and Wang, S. B. (2011). The mechanical and thermal insulating properties of resin-derived carbon foams reinforced by $K_2Ti_6O_{13}$ whiskers, Materials Science and Engineering: A, 528, 2023-2027. https://doi.org/10.1016/j.msea.2010.10.106
  12. Meng, X. D., Wang, D. Z., Liu, J. H., Lin, B. X., and Fu, Z. X. (2006). Effects of titania different phases on the microstructure and properties of $K_2Ti_6O_{13}$ nanowires, Solid State Communications, 137, 146-149. https://doi.org/10.1016/j.ssc.2005.11.004
  13. Park, J. (2010). Photocatalytic activity of hydroxyapatite-precipitated potassium titanate whiskers, Journal of Alloys and Compounds, 492, 57-60. https://doi.org/10.1016/j.jallcom.2009.11.172
  14. Shen, L. M., Bao, N. Z., Zheng, Y. Q., Gupta, A., An, T. C., and Yanagisawa, K. (2008). Hydrothermal splitting of titanate fibers to single-crystalline $TiO_2$ nanostructures with controllable crystalline phase, morphology, microstructure, and photocatalytic Activity, The Journal of Physical Chemistry C, 112, 8809-8818. https://doi.org/10.1021/jp711369e
  15. Takaya, S., Lu, Y., Guan, S., Miyazawa, K., Yoshida, H., and Asanuma, H. (2015). Fabrication of the photocatalyst thin films of nano-structured potassium titanate by molten salt treatment and its photocatalytic activity, Surface and Coatings Technology, 275, 260-263. https://doi.org/10.1016/j.surfcoat.2015.05.009
  16. Wang, Q., Guo, Q. J., Wang, H., and Li, B. (2015). Molten salt synthesis of crystalline photocatalytic potassium octatitanate whiskers from KCl Melt, Materials Letters, 155, 38-40. https://doi.org/10.1016/j.matlet.2015.04.113
  17. Wang, Q., Guo, Z. H., and Chung, J. S. (2009). Formation and structural characterization of potassium titanates and the potassium ion exchange property, Materials Research Bulletin, 44, 1973-1977. https://doi.org/10.1016/j.materresbull.2009.06.009
  18. Wang, Q. H., Li, Y. W., Luo, M., Sang, S. B., Zhu, T. B., and Zhao, L. (2014). Strengthening mechanism of graphene oxide nanosheets for $Al_2O_3$-C refractories, Ceramics International, 40, 163-172. https://doi.org/10.1016/j.ceramint.2013.05.117
  19. Xu, L. Q., and Cheng, L. (2010). Environmentally friendly growth of single-crystalline $K_2Ti_6O_{13}$ nanoribbons from KCl flux, Materials Characterization, 61, 245-248. https://doi.org/10.1016/j.matchar.2009.12.002
  20. Zhang, X. K., Tang, S. L., Zhai, L., Yu, J. Y., Shi, Y. G., and Du, Y. W. (2009). A simple molten salt method to synthesize single-crystalline potassium titanate nanobelts, Materials Letters, 63, 887-889. https://doi.org/10.1016/j.matlet.2009.01.030