DOI QR코드

DOI QR Code

Adsorption Calculation of Oxygen, Nitrogen and Argon in Carbon-Based Adsorbent with Randomly Etched Graphite Pores

무작위 에칭 흑연 기공을 가지는 탄소기반 흡착제에 의한 산소, 질소 및 아르곤의 흡착 계산

  • Seo, Yang Gon (Department of Chemical Engineering/RIGET, Gyeongsang National University)
  • 서양곤 (경상대학교 화학공학과/그린에너지융합연구소)
  • Received : 2018.09.20
  • Accepted : 2018.10.16
  • Published : 2018.12.31

Abstract

The adsorption equilibria of oxygen, nitrogen and argon on carbonaceous adsorbent with slit-shaped and randomly etched graphite (REG) pores were calculated by molecular simulation method. Reliable models of adsorbents and adsorbates for adsorption equilibria are important for the correct design of industrial adsorptive separation processes. At the smallest physical pore of $5.6{\AA}$, only oxygen molecules were accommodated at the center of the slit-shaped pore, and from $5.9{\AA}$ nitrogen and argon molecules could be accommodated in the pores. Slit pores showed higher adsorption capacity compared with REG pores with same averaged reenterance pore size due to dead volume and inaccessible volume in defected pores. And it was shown the adsorption capacities of oxygen and argon was same in larger pore size. From calculated adsorption isotherms at 298 K it showed that the adsorption capacity ratio of oxygen to nitrogen is increased as pressure is increased.

분자전산 모사 방법에 의하여 슬릿 기공과 무작위 에칭 흑연(randomly etched graphite, REG) 기공을 가지는 탄소계 흡착제에서 산소, 질소 그리고 아르곤에 대한 흡착 평형을 계산 하였다. 흡착량 계산에서 흡착제와 흡착질의 신뢰할 만한 모델은 공업적 흡착 분리 공정의 정확한 설계에 매우 중요하다. $5.6{\AA}$의 가장 작은 물리적 기공 크기에서 오직 산소만이 기공의 중심에 흡착하였으며, $5.9{\AA}$부터 질소와 아르곤이 흡착을 시작하였다. 균일한 표면을 가지는 슬릿기공이 결함 기공의 불용 부피와 접근이 불가능한 부피로 인하여 표면에 이질성을 가지는 REG 기공보다 더 높은 흡착 능력을 보였다. 탄소계 흡착제의 경우 질소보다 산소가 높은 흡착량을 보였으며, 기공이 큰 경우 산소와 아르곤의 흡착량은 동일함을 보였다. 298 K에서 흡착 등온선 계산으로부터 압력이 증가할수록 질소에 대한 산소의 흡착량의 비율이 높아짐을 보였다.

Keywords

CJGSB2_2018_v24n4_348_f0001.png 이미지

Figure 1. Schematic diagram of a SLIT pore (a) and a modified randomly etched graphite model (b).

CJGSB2_2018_v24n4_348_f0002.png 이미지

Figure 2. A sketch of the LJ and TraPPE models for argon (a), nitrogen (b) and oxygen (c).

CJGSB2_2018_v24n4_348_f0003.png 이미지

Figure 3. Singlet distribution for the nitrogen models in three slit-shaped pores (H = 8 (a), 10 (b) and 15 Å (c)) at 273.15 K and 1 bar. Filled circle symbols: 2 LJ site and square symbols: 1 LJ site.

CJGSB2_2018_v24n4_348_f0004.png 이미지

Figure 4. Schematic diagram of nitrogen molecules adsorbed on graphite wall with slit-shaped pore (H: physical width, w or w': reentrant width, H': accessible width).

CJGSB2_2018_v24n4_348_f0005.png 이미지

Figure 5. Calculated cumulative and pore size distribution of the slit-shaped pore and REG models. Dashed lines are cumulative distributions.

CJGSB2_2018_v24n4_348_f0006.png 이미지

Figure 6. Molecule density of nitrogen, oxygen and argon according to physical width of slit pores, and snapshots of oxygen at 77 K and 1 bar. The solid line-segments are drawn between the individual oxygen atoms in snapshots.

CJGSB2_2018_v24n4_348_f0007.png 이미지

Figure 7. Calculated adsorption isotherms for nitrogen in slit pores. open symbols represent desorption.

CJGSB2_2018_v24n4_348_f0008.png 이미지

Figure 8. Adsorption isotherms on slit pore and REG models at 298 K: red, nitrogen; blue, oxygen; black, argon; filled circle, slit_H101; open rectangle, REG_A10; open triangle, REG_A20.

CJGSB2_2018_v24n4_348_f0009.png 이미지

Figure 9. Illustration of the accessible pores in REG pore model.

CJGSB2_2018_v24n4_348_f0010.png 이미지

Figure 10. Plot of adsorption ratio of oxygen to nitrogen as a function of pressure.

Table 1. Lennard-Jones parameters used in this work

CJGSB2_2018_v24n4_348_t0001.png 이미지

References

  1. Yang, R. T., Gas Separation by Adsorption Processes, Butterworths, Stoneham (1987).
  2. Yang, R. T., Adsorbents: Fundamentals and Applications, John Wilet & Sons, Hoboken (2003).
  3. Barrer, R. M., "The Sorption of Polar and Non-polar Gases by Zeolites," Proc. Roy. Soc. A, 167, 392-420 (1938). https://doi.org/10.1098/rspa.1938.0138
  4. Milton, R. M., "Molecular Sieve Adsorbents," U.S. Patent No. 2,882,243 (1959).
  5. Guerin de Montgareuil, P., and Domine, D., "Process for Separating a Binary Gaseous Mixture by Adsorption," U.S. Patent No. 3,155,468 (1964).
  6. Chao, C. C., "Process for Separating Nitrogen from Mixtures Thereof with Less Polar Substances," U.S. Patent No. 4,859,217 (1989).
  7. Notaro, F., Ackey M., and Smolarek, J., "Recover Industrial Gases Via Adsorption," Chem. Eng., 106, 104-108 (1999).
  8. Suzuki, M., "Activated Carbon Fiber: Fundamentals and Applications," Carbon, 32(4), 577-586 (1994). https://doi.org/10.1016/0008-6223(94)90075-2
  9. Mayer, T. J., "Activated Carbon Fibers," In Burchell, T. D., Eds., Carbon Materials for Advanced Technologies, Pergamon, Oak Ridge (1999).
  10. Keller, J. U., and Staudt, R., Gas Adsorption Equilibria: Experimental Methods and Adsorptive Isotherms, Springer, New York (2005).
  11. Yang, R. T., and Duan, R. Z., "Kinetics and Mechanism of Gas-Carbon Reactions: Conformation of Etch Pits, Hydrogen Inhibition and Anisotropy in Reactivity," Carbon, 23(3), 325-331 (1985). https://doi.org/10.1016/0008-6223(85)90118-6
  12. Freeman, J. J., Gimblett, F. G. R., and Sing, K. S. W., "Studies of Activated Charcoal Cloth. V. Modification of Pore Structure by Impregnation with Certain Transition Metal Salts and Oxo-Compexes," Carbon, 27(1), 85-93 (1989). https://doi.org/10.1016/0008-6223(89)90160-7
  13. Oberlin, A., Villey, M., and Combaz, A., "Influence of Elemental Composition on Carbonization: Pyrolysis of Kerosene Shale and Kuckersite," Carbon, 18(5), 347-353 (1980). https://doi.org/10.1016/0008-6223(80)90006-8
  14. Stoeckli, H. F., "Microporous Carbons and Their Characterization: The Present State of the Art," Carbon, 28(1), 1-6 (1990). https://doi.org/10.1016/0008-6223(90)90086-E
  15. Kaneko, K., Cranknell, R. F., and Nicholson, D., "Nitrogen Adsorption in Slit Pores at Ambient Temperatures: Comparison of Simulation and Experiment," Langmuir, 10(12), 4606-4609 (1994). https://doi.org/10.1021/la00024a036
  16. McEnaney, B., Mays, T. J., and Chen, X., "Computer Simulations of Adsorption Processes in Cabonaceous Adsorbents," Fuel, 77(6), 557-562 (1998). https://doi.org/10.1016/S0016-2361(97)00086-0
  17. Gusev, V. Y., and O'Brien, J. A., "Prediction of Gas Mixture Adsorption on Activated Carbon Using Molecular Simulations," Langmuir, 14(21), 6328-6331 (1998). https://doi.org/10.1021/la980510v
  18. Kim, D. K., Kum, G. H., and Seo, Y. G., "Prediction of Adsorption Equilibria of Methane and Ethane onto Activated Carbon by Monte Carlo Method," Korean Chem. Eng. Res., 39(3), 307-313 (2001).
  19. Kumar, A., Lobo, R. F., and Wagner, N., "Grand Canonical Monte Carlo Simulation of Adsorption of Nitrogen and Oxygen in Realistic Nanoporous Carbon Models," AIChE J., 57(6), 1496-1505 (2011). https://doi.org/10.1002/aic.12356
  20. Jepps, O. G., and Bhatia, S. K., "Modeling Molecular Transport in Slit Pores," J. Chem. Phys., 120, 5396 (2004). https://doi.org/10.1063/1.1647516
  21. Seo, Y. G., Kum, G. H., and Seaton, N. A., "Monte Carlo Simulation of Transport Diffusion in Nanoporous Carbon Membrane," J. Mem. Sci., 195(1), 65-73 (2002). https://doi.org/10.1016/S0376-7388(01)00549-X
  22. Bojan, M. J., and Steele, W., "Computer Simulation in Pores with Rectangular Cross-Sections," Carbon, 36(10), 1417-1423 (1998). https://doi.org/10.1016/S0008-6223(98)00133-X
  23. Bojan, M. J., van Slooten, R., and Steele, W., "Computer Simulation Studies of the Storage of Methane in Microporous Carbons," Sep. Sci. Technol., 27(14), 1837-1856 (1992). https://doi.org/10.1080/01496399208019453
  24. Maddox, M. W., Quirke, N., and Gubbins, K. E., "A Molecular Simulation Study of Pore Networking Effects," Mol. Simul., 19(5-6), 267-283 (1997). https://doi.org/10.1080/08927029708024157
  25. Seaton, N. A., Friedman, S. P., MacElroy, J. M. D., and Murphy, B. J., "The Molecular Sieving Mechanism in Carbon Molecular Sieves: A Molecular Dynamics and Critical Path Analysis," Langmuir, 13(7), 1199-1204 (1997).
  26. Lucena, S. M. P., Paiva, C. A. S., Silvino, P. F. G., Azevedo, D. C. S., and Cavalcante Jr, C. L., "The Effect of Heterogeneity in the Randomly Etched Graphite Model for Carbon Pore Size Characterization," Carbon, 48(9), 2554-2565 (2010). https://doi.org/10.1016/j.carbon.2010.03.034
  27. Kuchta, B., and Etters, R. D., "Calculated Properties of Monolayer and Multilayer $N_2$ on Graphite," Phys. Rev. B, 36, 3400-3406 (1987). https://doi.org/10.1103/PhysRevB.36.3400
  28. Potoff, J. J., and Siepmann, J. I., "Vapor-Liquid Equilibria of Mixtures Containing Alkanes, Carbon Dioxide, and Nitrogen," AIChE J., 47(7), 1676-1682 (2001). https://doi.org/10.1002/aic.690470719
  29. Frenkel, D., and Smit, B., Understanding Molecular Simulation: From Algorithms to Applications, Academic Press, San Diego (2002).
  30. Allen, M. P., and Tildesley, D. J., Computer Simulation of Liquids, Clarendon Press, Oxford, UK (1986).
  31. Smith, W., and Finchan, D., "The Ewald Sum in Truncated Octahedral and Rhombic Dodecahedral Boundary Conditions," Mol. Simul., 10(1), 67-71 (1993). https://doi.org/10.1080/08927029308022499
  32. Steele, W. A., "The Physical Interaction of Gases with Crytalline Solids," Surf. Sci., 36, 317-352 (1973).
  33. Hansen, N., Agbor, F. A. B., and Keil, F. J., "New Force Fields for Nitrous Oxide and Oxygen and Their Application to Phase Equilibria Simulation," Fluid Phase Equilbria, 259, 180-188 (2007). https://doi.org/10.1016/j.fluid.2007.07.014
  34. Rowley, L. A., Nicholson, D., and Parsonage, N. G., "Monte Carlo Grand Canonical Ensemble Calculation in a Gas-Liquid Transition Region for 12-6 Argon," J. Comp. Phys., 17, 401-414 (1975) https://doi.org/10.1016/0021-9991(75)90042-X
  35. Ravikovich, P. I., Vishnyyakov, A., and Neimark, A. V., "Density Functional Theories and Molecular Simulations of Adsorption and Phase Transitions in Nanopores," Phys. Rev. E, 64, 011602 (2001). https://doi.org/10.1103/PhysRevE.64.011602
  36. June, R. L., Bell, A. T., and Theodoru, D. N., "Prediction of Low Occupancy Sorption of Alkanes," J. Phys. Chem., 94(4), 1508-1516 (1990).
  37. Thomson, K. T., and Gubbins, K. E., "Modeling Structural Morphology of Microporous Carbons by Reverse Monte Carlo," Langmuir, 16(13), 5761-5773 (2000). https://doi.org/10.1021/la991581c
  38. Bhattacharya, S., and Gubbins, K. E., "Fast Method for Computing Pore Size Distributions of Model Materials," Langmuir, 22, 7726-7731 (2006). https://doi.org/10.1021/la052651k
  39. Quirke, N., and Tennison, S. R. R., "The Interpretation of Pore Size Distributions of Microporous Carbons," Carbon, 34(10), 1281-1286 (1996). https://doi.org/10.1016/0008-6223(96)00099-1
  40. Chen, Y. D., Yang, R. T., and Uawithya, P., "Diffusion of Oxygen, Nitrogen and Their Mixtures in Carbon Molecular Sieve," AIChE J., 40(40), 577-585 (1994). https://doi.org/10.1002/aic.690400402
  41. Park, Y. J., Lee, S. J., Moon, J. H., Choi, D. K., and Lee C. H., "Adsorption Equilibria of $O_2$, $N_2$, and Ar on Carbon Molecular Sieve and Zeolite 10X, 13X, and LiX," J. Chem. Eng. Data, 51(3), 1001-1008 (2006). https://doi.org/10.1021/je050507v