DOI QR코드

DOI QR Code

Co-firing Characteristics and Slagging Behavior of Sewage Sludge with Coal and Wood Pellet in a Bubbling Fluidized Bed

기포 유동층 반응기를 이용한 하수 슬러지와 석탄 및 우드 펠렛의 혼소 특성 및 슬래깅 성향 연구

  • Received : 2018.06.27
  • Accepted : 2018.08.02
  • Published : 2018.12.31

Abstract

The results of an experimental investigation on the co-firing characteristics and slagging behavior of dried and hydrothermal carbonization sewage sludge, sub-bituminous coal, and wood pellet in a fluidized bed were presented. Combustion tests were conducted in a lab-scale bubbling fluidized bed system at the uniform fuel-air equivalence ratio, air flow rate, and initial bed temperature to measure bed temperature distribution and combustion gas composition. 4 different fuel blending cases were prepared by mixing sewage sludge fuels with coal and wood pellet with the ratio of 50 : 50 by the heating value. $NO_x$ was mostly NO than $NO_2$ and measured in the range of 400 to 600 ppm in all cases. $SO_2$ was considered to be affected mostly by the sulfur content of the sewage sludge fuels. The cases of hydrothermal carbonization sewage sludge mixture showed slightly less $SO_2$ emission but higher fuel-N conversion than the dried sewage sludge mixing cases. The result of fly ash composition analysis implied that the sewage sludge fuels would increase the possibility of slagging/fouling considering the contents of alkali species, such as Na, K, P. Between the two different sewage sludge fuels, dried sewage sludge fuel was expected to have the more severe impact on slagging/fouling behavior than hydrothermal carbonization sewage sludge fuel.

실험실 규모 기포 유동층 반응기를 이용한 하수 슬러지와 석탄 및 우드 펠렛의 혼소 실험 및 회분 분석을 통한 슬래깅 성향을 살펴보았다. 연료는 일반 건조 및 수열탄화를 통해 제작된 하수 슬러지와 아역청탄, 우드 펠렛이 적용되었다. 연소 실험은 당량비 및 산화제 유량, 초기 온도를 고정하고 2종의 하수 슬러지 연료와 석탄 또는 우드 펠렛을 발열량 기준 50 : 50 비율로 혼합한 총 4개의 조건에 대해 반응기 온도 및 배가스 조성을 측정하였다. 배가스 중 $NO_x$는 모든 조건에서 대부분 NO의 형태로 400 ~ 600 ppm 범위에서 측정되었다. $SO_2$는 원료 내 황 함량을 고려하면 하수 슬러지의 투입량이 큰 영향을 미쳤을 것으로 예상되는 가운데 수열탄화 연료가 일반 건조 연료에 비해 다소 낮은 경향을 보였다. 비산 회분 조성 분석 결과 하수 슬러지 연료가 슬래깅/파울링 가능성을 높일 것으로 생각되며, 수열탄화 연료가 일반 건조 연료에 비해 상대적으로 양호한 결과를 보일 것으로 예상되었다.

Keywords

CJGSB2_2018_v24n4_323_f0001.png 이미지

Figure 1. Schematic diagram of the lab-scale bubbling fluidized bed system.

CJGSB2_2018_v24n4_323_f0002.png 이미지

Figure 2. Measured temperature profiles of the tested conditions.

CJGSB2_2018_v24n4_323_f0003.png 이미지

Figure 3. Measured emission profiles of the tested conditions.

Table 1. Proximate, ultimate and heating value analysis results of Coal, WP, HTCSS and DSS

CJGSB2_2018_v24n4_323_t0001.png 이미지

Table 2. Ash fusion temperature analysis result at oxidizing condition

CJGSB2_2018_v24n4_323_t0002.png 이미지

Table 3. Evaluation of slagging tendency as ash fusibility index (AFI)

CJGSB2_2018_v24n4_323_t0003.png 이미지

Table 4. Results of ash composition analysis for the fuel samples (wt%)

CJGSB2_2018_v24n4_323_t0004.png 이미지

Table 5. Ash deposition tendency of fuel sample ashes

CJGSB2_2018_v24n4_323_t0005.png 이미지

Table 6. Experimental conditions

CJGSB2_2018_v24n4_323_t0006.png 이미지

Table 7. Mean temperature at measured points

CJGSB2_2018_v24n4_323_t0007.png 이미지

Table 8. Mean flue gas emissions at sampling point

CJGSB2_2018_v24n4_323_t0008.png 이미지

Table 9. Results of ash composition analysis for the tested cases (wt%)

CJGSB2_2018_v24n4_323_t0009.png 이미지

Table 10. Ash deposition tendency of the tested cases

CJGSB2_2018_v24n4_323_t0010.png 이미지

References

  1. Ogada, T., and Werther, J., "Combustion Characteristics of Wet Sludge in a Fluidized Bed," Fuel, 75(5), 617-626 (1996). https://doi.org/10.1016/0016-2361(95)00280-4
  2. Werther, J., and Ogada, T., "Sewage Sludge Combustion," Prog. Energy Combust. Sci., 25(1), 55-116 (1999). https://doi.org/10.1016/S0360-1285(98)00020-3
  3. Stasta, P., Boran, J., Bebar, L., Stehlik, P., and Oral, J., "Thermal Processing of Sewage Sludge," Appl. Therm. Eng., 26(13), 1420-1426 (2006). https://doi.org/10.1016/j.applthermaleng.2005.05.030
  4. Liu, X., Chang, F., Wang, C., Jin, Z., Wu, J., Zuo, J., and Wang, K., "Pyrolysis and Subsequent Direct Combustion of Pyrolytic Gases for Sewage Sludge Treatment in China," Appl. Therm. Eng., 128, 464-470 (2018). https://doi.org/10.1016/j.applthermaleng.2017.08.091
  5. Wang, Z., Ma, X., Yao, Z., Yu, Q., Wang, Z., and Lin, Y., "Study of the Pyrolysis of Municipal Sludge in $N_2/CO_2$ Atmosphere," Appl. Therm. Eng., 128, 662-671 (2018). https://doi.org/10.1016/j.applthermaleng.2017.09.044
  6. Zhu, J., Yao, Y., Lu, Q., Gao, M., and Ouyang, Z., "Experimental Investigation of Gasification and Incineration Characteristics of Dried Sewage Sludge in a Circulating Fluidized Bed," Fuel, 150, 441-447 (2015). https://doi.org/10.1016/j.fuel.2015.02.031
  7. Li, H., Jiang, L., Li, C., Liang, J., Yuan, X., Xiao, Z., Xiao, Z., and Wang, H., "Co-pelletization of Sewage Sludge and Biomass: The Energy Input and Properties of Pellets," Fuel Process Technol., 132, 55-61 (2015). https://doi.org/10.1016/j.fuproc.2014.12.020
  8. Cho, K., Statistics of Sewerage 2015, Ministry of Environment, 1622-1639 (2016).
  9. Funke, A., and Ziegler, F., "Hydrothermal Carbonization of Biomass: A Summary and Discussion of Chemical Mechanisms for Process Engineering," Biofuels Bioprod. Bioref., 4, 160-117 (2010). https://doi.org/10.1002/bbb.198
  10. He, C., Giannis, A., and Wang, J., "Conversion of Sewage Sludge to Clean Solid Fuel using Hydrothermal Carbonization: Hydrochal Fuel Characteristics and Combustion Behavior," Appl. Energy, 111, 257-266 (2013). https://doi.org/10.1016/j.apenergy.2013.04.084
  11. Kim, D., Lee, K., and Park, K., "Hydrothermal Carbonization of Anaerobically Digested Sludge for Solid Fuel Production and Energy Recovery," Fuel, 130, 120-125 (2014).
  12. Lee, Y., Kim, J., Kim, D., and Lee, Y., "Experimental Study of Co-firing and Emission Characteristics Fueled by Sewage Sludge and Wood Pellet in Bubbling Fluidized Bed," Clean Technol., 23(1), 80-89 (2017). https://doi.org/10.7464/KSCT.2017.23.1.080
  13. Cui, H., Ninomiya, Y., Masui, M., Mizukoshi, H., Sakano, T., and Kanaoka, C., "Fundamental Behaviors in Combustion of Raw Sewage Sludge," Energy Fuels, 20(1), 77-83 (2006). https://doi.org/10.1021/ef050188d
  14. Gray, R. J., and Moore, G. F., "Burning the Sub-bituminous Coals of Montana and Wyoming in Large Utility Boilers," ASME Paper, 74-WA/FU-1 (1974).
  15. Vamvuka, D., Pitharoulis, M., Alevizos, G., Repouskou, E., and Pentari, D., "Ash Effects during Combustion of Lignite/ Biomass Blends in Fluidized Bed," Renew. Energy, 34(12), 2662-2671 (2009). https://doi.org/10.1016/j.renene.2009.05.005
  16. Eriksson, G., Grimm, A., Skoglund, N., Bostrom, D., and Ohman, M., "Combustion and Fuel Characterisation of Wheat Distillers Dried Grain with Solubles (DDGS) and Possible Combustion Applications, Fuel, 102, 208-220 (2012). https://doi.org/10.1016/j.fuel.2012.05.019
  17. Areeprasert, C., Scala, F., Coppola, A., Urciuolo, M., Chirone, R., Chanyavanich, P., and Yoshikawa, K., "Fluidized Bed Co-Combustion of Hydrothermally Treated Paper Sludge with Two Coals of Different Rank," Fuel Process Technol., 144, 230-238 (2016). https://doi.org/10.1016/j.fuproc.2015.12.033
  18. Duan, L., Duan, Y., Zhao, C., and Anthony, E. J., "NO Emission during Co-Firing Coal and Biomass in an Oxy-Fuel Circulating Fluidized Bed Combustor," Fuel, 150, 8-13 (2015). https://doi.org/10.1016/j.fuel.2015.01.110
  19. Glarborg, P., Jensen, A. D., and Johnsson, J. E., "Fuel Nitrogen Conversion in Solid Fuel Fired Systems," Prog. Energy Combust. Sci., 29(2), 89-113 (2003). https://doi.org/10.1016/S0360-1285(02)00031-X
  20. Rokni, E., Ren, X., Panahi, A., and Levendis, Y. A., "Emissions of $SO_2$, $NO_x$, $CO_2$, and HCl from Co-Firing of Coals with Raw and Torrefied Biomass Fuels," Fuel. 211, 363-374 (2018). https://doi.org/10.1016/j.fuel.2017.09.049
  21. El-Samed, A. K., Hampartsoumian, E., Farag, T. M., and Williams, A., "Variation of Char Reactivity Dyring Simultaneous Devolatilization and Combustion of Coals in a Drop-Tube Reactor," Fuel, 69(8), 1029-1036 (1990). https://doi.org/10.1016/0016-2361(90)90015-I