Figure 1: T1 Δ T2 with T1 is the bistar B2,2 and T2 is the path on 3 vertices
Figure 2: The subdivision graph (left) of the bistar B2,2 (right)
Figure 3: S(P4 × P2) odd harmonious labeling
References
- J. Abrham, Existence theorems for certain types of graceful valuations of snakes, Congr. Numer., 93(1993), 17-22.
- B. D. Acharya, and S. M. Hegde, Arithmetic graphs, J. Graph Theory, 14(3)(1990), 275-299. https://doi.org/10.1002/jgt.3190140302
- B. D. Acharya, and S. M. Hegde, On certain vertex valuations of a graph I, Indian J. Pure Appl. Math., 22(1991), 553-560.
- M. Burzio, and G. Ferrarese, The subdivision graph of a graceful tree is a graceful tree, Discrete Math., 181(1998), 275-281. https://doi.org/10.1016/S0012-365X(97)00069-1
- J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., 20:Ds6(2017).
- J. A. Gallian, and L. A. Schoenhard, Even harmonious graphs, AKCE Int. J. Graphs Comb., 11(1)(2014), 27-49.
- R. B. Gnanajothi, Topics in graph theory, Ph. D. Thesis, Madurai Kamaraj University, 1991.
- K. M. Koh, T. Tan, and D. G. Rogers, Two theorems on graceful trees, Discrete Math., 25(1979), 141-148. https://doi.org/10.1016/0012-365X(79)90016-5
-
A. Liado, and S. C. Lopez, Edge-decompositions of
$K_{n,n}$ into isomorphic copies of a given tree, J. Graph Theory, 48(2005), 1-18. https://doi.org/10.1002/jgt.20024 - Z. H. Liang, On Odd Arithmetic Graphs, J. Math. Res. Exposition, 28(3)(2008), 706-712.
- Z. H. Liang, and Z. L. Bai, On the odd harmonious graphs with applications, J. Appl. Math. Comput., 29(2009), 105-116. https://doi.org/10.1007/s12190-008-0101-0
- A. Rosa, On certain valuations of the vertices of a graph, Theory Graphs, Int. Symp. Rome, (1966), 349-355.
- P. B. Sarasija, and R. Binthiya, Even harmonious graphs with applications, International journal of computer science and information security, 9(7)(2011), 161-163.
- G. A. Saputri, K. A. Sugeng, and D. Froncek, The odd harmonious labeling of dumbbell and generalized prism graphs, AKCE Int. J. Graphs Comb., 10(2013), 221-228.
- T. Traetta, A complete solution to the two-table Oberwolfach problems, J. Combin. Theory Ser. A, 120(5)(2013), 984-997. https://doi.org/10.1016/j.jcta.2013.01.003