DOI QR코드

DOI QR Code

Odd Harmonious and Strongly Odd Harmonious Graphs

  • Received : 2017.04.12
  • Accepted : 2018.10.02
  • Published : 2018.12.23

Abstract

A graph G = (V (G), E(G) of order n = |V (G)| and size m = |E(G)| is said to be odd harmonious if there exists an injection $f:V(G){\rightarrow}\{0,\;1,\;2,\;{\ldots},\;2m-1\}$ such that the induced function $f^*:E(G){\rightarrow}\{1,\;3,\;5,\;{\ldots},\;2m-1\}$ defined by $f^*(uv)=f(u)+f(v)$ is bijection. While a bipartite graph G with partite sets A and B is said to be bigraceful if there exist a pair of injective functions $f_A:A{\rightarrow}\{0,\;1,\;{\ldots},\;m-1\}$ and $f_B:B{\rightarrow}\{0,\;1,\;{\ldots},\;m-1\}$ such that the induced labeling on the edges $f_{E(G)}:E(G){\rightarrow}\{0,\;1,\;{\ldots},\;m-1\}$ defined by $f_{E(G)}(uv)=f_A(u)-f_B(v)$ (with respect to the ordered partition (A, B)), is also injective. In this paper we prove that odd harmonious graphs and bigraceful graphs are equivalent. We also prove that the number of distinct odd harmonious labeled graphs on m edges is m! and the number of distinct strongly odd harmonious labeled graphs on m edges is [m/2]![m/2]!. We prove that the Cartesian product of strongly odd harmonious trees is strongly odd harmonious. We find some new disconnected odd harmonious graphs.

Keywords

GBDHBF_2018_v58n4_747_f0001.png 이미지

Figure 1: T1 Δ T2 with T1 is the bistar B2,2 and T2 is the path on 3 vertices

GBDHBF_2018_v58n4_747_f0002.png 이미지

Figure 2: The subdivision graph (left) of the bistar B2,2 (right)

GBDHBF_2018_v58n4_747_f0003.png 이미지

Figure 3: S(P4 × P2) odd harmonious labeling

References

  1. J. Abrham, Existence theorems for certain types of graceful valuations of snakes, Congr. Numer., 93(1993), 17-22.
  2. B. D. Acharya, and S. M. Hegde, Arithmetic graphs, J. Graph Theory, 14(3)(1990), 275-299. https://doi.org/10.1002/jgt.3190140302
  3. B. D. Acharya, and S. M. Hegde, On certain vertex valuations of a graph I, Indian J. Pure Appl. Math., 22(1991), 553-560.
  4. M. Burzio, and G. Ferrarese, The subdivision graph of a graceful tree is a graceful tree, Discrete Math., 181(1998), 275-281. https://doi.org/10.1016/S0012-365X(97)00069-1
  5. J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., 20:Ds6(2017).
  6. J. A. Gallian, and L. A. Schoenhard, Even harmonious graphs, AKCE Int. J. Graphs Comb., 11(1)(2014), 27-49.
  7. R. B. Gnanajothi, Topics in graph theory, Ph. D. Thesis, Madurai Kamaraj University, 1991.
  8. K. M. Koh, T. Tan, and D. G. Rogers, Two theorems on graceful trees, Discrete Math., 25(1979), 141-148. https://doi.org/10.1016/0012-365X(79)90016-5
  9. A. Liado, and S. C. Lopez, Edge-decompositions of $K_{n,n}$ into isomorphic copies of a given tree, J. Graph Theory, 48(2005), 1-18. https://doi.org/10.1002/jgt.20024
  10. Z. H. Liang, On Odd Arithmetic Graphs, J. Math. Res. Exposition, 28(3)(2008), 706-712.
  11. Z. H. Liang, and Z. L. Bai, On the odd harmonious graphs with applications, J. Appl. Math. Comput., 29(2009), 105-116. https://doi.org/10.1007/s12190-008-0101-0
  12. A. Rosa, On certain valuations of the vertices of a graph, Theory Graphs, Int. Symp. Rome, (1966), 349-355.
  13. P. B. Sarasija, and R. Binthiya, Even harmonious graphs with applications, International journal of computer science and information security, 9(7)(2011), 161-163.
  14. G. A. Saputri, K. A. Sugeng, and D. Froncek, The odd harmonious labeling of dumbbell and generalized prism graphs, AKCE Int. J. Graphs Comb., 10(2013), 221-228.
  15. T. Traetta, A complete solution to the two-table Oberwolfach problems, J. Combin. Theory Ser. A, 120(5)(2013), 984-997. https://doi.org/10.1016/j.jcta.2013.01.003