DOI QR코드

DOI QR Code

페로니켈슬래그 미분말을 사용한 모르타르의 응결시간 및 압축강도특성에 관한 실험적 연구

An Experimental Study on the Setting Time and Compressive strength of Mortar using Ferronickel Slag Powder

  • Kim, Young-Uk (Department of Architectural Engineering, Wonkwang University) ;
  • Kim, Do-Bin (Department of Architectural Engineering, Wonkwang University) ;
  • Choi, Se-Jin (Department of Architectural Engineering, Wonkwang University)
  • 투고 : 2018.09.06
  • 심사 : 2018.11.12
  • 발행 : 2018.12.20

초록

본 연구에서는 페로니켈슬래그 미분말의 시멘트 대체재로서의 가능성을 평가하기 위하여 페로니켈슬래그 미분말 사용 모르타르의 압축강도 및 건조수축특성을 비교 분석하였다. 연구결과 페로니켈슬래그 미분말을 사용한 배합의 경우 동일한 양의 고로슬래그 미분말 및 플라이애시를 사용한 배합에 비해 미소수화열량이 낮게 나타났으며 모르타르 플로우는 상대적으로 다소 높은 것으로 나타났다. 또한 페로니켈슬래그 미분말을 사용한 모르타르의 압축강도의 경우 초기 강도발현은 고로슬래그 미분말 및 플라이애시와 유사하게 나타났으나 재령 28일에서는 상대적으로 낮은 압축강도를 발현하였다. 건조수축의 경우 페로니켈슬래그 미분말을 사용한 배합에서 고로슬래그 미분말을 사용한 배합에 비해 낮은 건조수축값을 나타내었으며 플라이애시를 혼입한 배합의 건조수축과 유사하게 나타났다.

This study evaluate the fluidity and hardening properties of mortar by replacement ratio of ferronickel slag powder to estimate the applicability of ferronickel slag powder for cement replacement materials. Ferronickel slag powder was replaced by 0, 5, 10, 15 and 20% of the cement weight. In addition, blast furnace slag powder and fly ash were also used for comparing with the mixtures using ferronickel slag powder. As the test results, the micro-hydration heat of the mixture containing the ferronickel slag powder was lower than that of the mixtures containing the same amount of blast furnace slag powder and fly ash. The flow of the sample with ferronickel slag powder was relatively higher than the other mixtures. In all ages, the compressive strength of the mixture with ferronickel slag powder and fly ash was similar to that of the mix containing only fly ash. In case of drying shrinkage, the mixture containing ferronickel slag powder exhibited lower drying shrinkage than the mixture using blast furnace slag powder, and similar to the mixture containing fly ash.

키워드

GCSGBX_2018_v18n6_551_f0001.png 이미지

Figure 1. Ferronickel slag

GCSGBX_2018_v18n6_551_f0002.png 이미지

Figure 2. SEM image of ferronickel slag powder

GCSGBX_2018_v18n6_551_f0003.png 이미지

Figure 3. Multi micro calorimeter

GCSGBX_2018_v18n6_551_f0004.png 이미지

Figure 4. Demec strain gauge

GCSGBX_2018_v18n6_551_f0005.png 이미지

Figure 5. 72 hours maximum microhydration heat

GCSGBX_2018_v18n6_551_f0006.png 이미지

Figure 6. Mortar flow (Series I)

GCSGBX_2018_v18n6_551_f0007.png 이미지

Figure 7. Mortar flow (Series II)

GCSGBX_2018_v18n6_551_f0008.png 이미지

Figure 8. Setting time (Series I)

GCSGBX_2018_v18n6_551_f0009.png 이미지

Figure 9. Setting time (Series II)

GCSGBX_2018_v18n6_551_f0010.png 이미지

Figure 10. Compressive strength (Series I)

GCSGBX_2018_v18n6_551_f0011.png 이미지

Figure 11. Compressive strength (Series II)

GCSGBX_2018_v18n6_551_f0012.png 이미지

Figure 12. Drying shrinkage (Series I)

GCSGBX_2018_v18n6_551_f0013.png 이미지

Figure 13. Drying shrinkage (Series II)

Table 2. Mix proportions and Test plan

GCSGBX_2018_v18n6_551_t0001.png 이미지

Table 1. Chemical composition of powders

GCSGBX_2018_v18n6_551_t0002.png 이미지

Table 3. Test result

GCSGBX_2018_v18n6_551_t0003.png 이미지

참고문헌

  1. Park MS. The study on quality properties of concrete using water granulated ferro-nickel slag for fine aggregate [master's thesis]. [Jecheon (Korea)]: Semyung University; 2011. 72 p.
  2. Choi YC, Choi SC. Alkali-silica reactivity of cementitious materials using ferro-nickel slag fine aggregates produced in different cooling conditions. Construction and Building Materials. 2015 Nov;99: 279-87. https://doi.org/10.1016/j.conbuildmat.2015.09.039
  3. Saha AK, Sarker PK. Sustainable use of ferronickel slag fine aggregate and fly ash in structural concrete mechanical properties and leaching study. Journal of Cleaner Production. 2017 Sep;162:438-48. https://doi.org/10.1016/j.jclepro.2017.06.035
  4. Choi YW, Park MS, Bae SH, Lee HH, Jo BS. Properties of water granulated ferro-nickel slag as fine aggregate for concrete. Proceedings of Korean Society of Civil Engineers; 2010 Sep 20-22; Incheon, Korea. Seoul (Korea): Korean Society of Civil Engineers; 2010. p. 1462-5.
  5. Choi YW, Park MS, Oh SR, Lee GM, Kim JS, Cho BS. Evaluation of field applicability of concrete using water granulated ferro-nickel slag for fine aggregate. Proceeding of Korea Concrete Institute. 2010 Nov 5-6; Gangchon, Korea. Seoul (Korea): Korea Concrete Institute; 2010. p. 217-8.
  6. KS F 2527. Concrete aggregate. Seoul(Korea): Korean Agency for Technology and Standards; 2016. 108 p.
  7. Saha AK, Sarker PK. Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars. Construction and Building Materials. 2016 Oct;123:135-42. https://doi.org/10.1016/j.conbuildmat.2016.06.144
  8. Rahman HM, Sarker PK, Shaikh FUA, Saha AK. Soundness and compressive strength of Portland cement blended with ground granulated ferronickel slag. Construction and Building Materials. 2017 Jun;140:194-202. https://doi.org/10.1016/j.conbuildmat.2017.02.023
  9. Lee CH. The status of construction recycling resources in global ferronickel slag market. Magazine of Korean Recycled Construction Resources Institute. 2017 Sep;12(3):54-8.
  10. KS F 2424. Standard test method length change of mortar and concrete. Seoul(Korea); 2015. 10 p.