DOI QR코드

DOI QR Code

Nanolayered CuWO4 Decoration on Fluorine-Doped SnO2 Inverse Opals for Solar Water Oxidation

  • Cho, Ha Eun (Department of Chemistry Education and Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Yun, Gun (Department of Chemistry Education and Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Arunachalam, Maheswari (Department of Chemistry, Chonnam National University) ;
  • Ahn, Kwang-Soon (School of Chemical Engineering, Yeungnam University) ;
  • Kim, Chung Soo (Analysis & Certification Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lim, Dong-Ha (Korea Institute of Industrial Technology) ;
  • Kang, Soon Hyung (Department of Chemistry Education and Optoelectronics Convergence Research Center, Chonnam National University)
  • 투고 : 2018.06.26
  • 심사 : 2018.07.22
  • 발행 : 2018.12.31

초록

The pristine fluorine-doped $SnO_2$ (abbreviated as FTO) inverse opal (IO) was developed using a 410 nm polystyrene bead template. The nanolayered copper tungsten oxide ($CuWO_4$) was decorated on the FTO IO film using a facile electrochemical deposition, subsequently followed by annealing at $500^{\circ}C$ for 90 min. The morphologies, crystalline structure, optical properties and photoelectrochemical characteristics of the FTO and $CuWO_4$-decorated FTO (briefly denoted as $FTO/CuWO_4$) IO film were investigated by field emission scanning electron microscopy, X-ray diffraction, UV-vis spectroscopy and electrochemical impedance spectroscopy, showing FTO IO in the hexagonally closed-pack arrangement with a pore diameter and wall thickness of about 300 nm and 20 nm, respectively. Above this film, the $CuWO_4$ was electrodeposited by controlling the cycling number in cyclic voltammetry, suggesting that the $CuWO_4$ formed during 4 cycles (abbreviated as $CuWO_4$(4 cycles)) on FTO IO film exhibited partial distribution of $CuWO_4$ nanoparticles. Additional distribution of $CuWO_4$ nanoparticles was observed in the case of $FTO/CuWO_4$(8 cycles) IO film. The $CuWO_4$ layer exhibits triclinic structure with an indirect band gap of approximately 2.5 eV and shows the enhanced visible light absorption. The photoelectrochemical (PEC) behavior was evaluated in the 0.5 M $Na_2SO_4$ solution under solar illumination, suggesting that the $FTO/CuWO_4$(4 cycles) IO films exhibit a photocurrent density ($J_{sc}$) of $0.42mA/cm^2$ at 1.23 V vs. reversible hydrogen electrode (RHE, denoted as $V_{RHE}$), while the FTO IO and $FTO/CuWO_4$(8 cycles) IO films exhibited a $J_{sc}$ of 0.14 and $0.24mA/cm^2$ at $1.23V_{RHE}$, respectively. This difference can be explained by the increased visible light absorption by the $CuWO_4$ layer and the favorable charge separation/transfer event in the cascading band alignment between FTO and $CuWO_4$ layer, enhancing the overall PEC performance.

키워드

참고문헌

  1. Y. Surendranath, D. G. Nocera, Progess in Inorganic Chemistry, 1st ed, Ed., John Wiley & sons Inc. Hoboken, NJ, 2012.
  2. R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Chem. Rev, 2014, 114(19), 9824-9852. https://doi.org/10.1021/cr5000738
  3. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev, 2010, 110(11), 6446-6473. https://doi.org/10.1021/cr1002326
  4. A. Fujishima, K. Honda, Nature, 1972, 238(5358), 37-38. https://doi.org/10.1038/238037a0
  5. M. Balamurugan, G. Yun, K. -S. Ahn, S. H. Kang, J. phys. chem. C, 2018, 121, 7625-7634.
  6. K. Sivula, F. L. Formal, M. Gratzel, ChemSusChem, 2011, 4(4), 432-449. https://doi.org/10.1002/cssc.201000416
  7. C. A. Bignozzi, S. Caramori, V. Cristino, R. Argazzi, L. Meda, A. Tacca, Chem. Soc. Rev, 2013, 42(6), 2228-2246. https://doi.org/10.1039/C2CS35373C
  8. K. M. Nam, E. A. Cheon, W. J. Shin, A. J. Bard, Langmuir, 2015, 31(39), 10897-10903. https://doi.org/10.1021/acs.langmuir.5b01780
  9. O. Yu. Khyzhun, V. L. Bekenev, Yu. M. Solonin, J. Alloys. Comped, 2009, 480, 184-189. https://doi.org/10.1016/j.jallcom.2009.01.119
  10. S. Chen, M. N. Hossain, A. Chen, ChemElectroChem, 2018, 5(3), 523-530. https://doi.org/10.1002/celc.201700991
  11. C. R. Lhermitte, B. M. Bartlett, Acc. Chem. Res, 2016, 49(6), 1121-1129. https://doi.org/10.1021/acs.accounts.6b00045
  12. D. Bohra, W. A. Smith, Phys. Chem. Chem. Phys, 2015, 17(15), 9857-9866. https://doi.org/10.1039/c4cp05565a
  13. M. Davi, A. Drichel, M. Mann, T. Scholz, F. Schrader, A. Rokicinska, P. Kustrowski, R. Dronskowski, A. Slabon, J. Phys. Chem. C, 2017, 121(47), 26265-26274. https://doi.org/10.1021/acs.jpcc.7b10220
  14. G. Yun, M. Balamurugan, H. -S. Kim, K. -S. Ahn, S. H. Kang, J. Phys. Chem. C, 2016, 120(11), 5906-5915. https://doi.org/10.1021/acs.jpcc.6b00044
  15. Y. Gun, G. Y. Song, V. H. Quy, J. Heo, H. Lee, K. -S. Ahn, S. H. Kang, ACS Appl. Mater. Interfaces, 2015, 7, 20292-20303. https://doi.org/10.1021/acsami.5b05914
  16. J. E. Yourey, B. M. Bartlett, J. Mater. Chem, 2011, 21(21), 7651-7660. https://doi.org/10.1039/c1jm11259g
  17. R. C. Schroden, M. Al-Daous, C. F. Blanford, A. Stein, Chem. Mater, 2002, 14(8), 3305-3315. https://doi.org/10.1021/cm020100z
  18. J. Ruiz-Fuertes, D. Errandonea, A. Segura, F. J. Manj?n, Z. Zhu, C. Y. Tu, High Pressure Res., 2008, 28(4), 565-570. https://doi.org/10.1080/08957950802446643
  19. M. Zhou, Z. Liu, X. Li, Z. Liu, Ind. Eng. Chem. Res., 2018, 57(18), 6210-6217. https://doi.org/10.1021/acs.iecr.8b00358
  20. J. Li, N. Wu, Catal. Sci. Technol, 2015, 5, 1360-1384. https://doi.org/10.1039/C4CY00974F
  21. S. K. Pilli, T. G. Deutsch, T. E. Furtak, L. D. Brown, J. A. Turner, A. M. Herring, Phys. Chem. Chem. Phys, 2013, 15(9), 3273-3278. https://doi.org/10.1039/c2cp44577h