DOI QR코드

DOI QR Code

The effect of glazing and aging on the surface properties of CAD/CAM resin blocks

  • Tekce, Neslihan (Department of Restorative Dentistry, Faculty of Dentistry, Kocaeli University) ;
  • Fidan, Sinan (Department of Airframe & Powerplant, Faculty of Aeronautics and Astronautics, Kocaeli University) ;
  • Tuncer, Safa (Department of Restorative Dentistry, Faculty of Dentistry, Istanbul University) ;
  • Kara, Dilan (Department of Restorative Dentistry, Faculty of Dentistry, Kocaeli University) ;
  • Demirci, Mustafa (Department of Restorative Dentistry, Faculty of Dentistry, Istanbul University)
  • Received : 2017.04.26
  • Accepted : 2017.07.11
  • Published : 2018.02.28

Abstract

PURPOSE. To investigate the effect of accelerated aging on surface properties of glazed CAD/CAM resin blocks using a 2D surface profilometer and a 3D non-contact optical profilometer. MATERIALS AND METHODS. Three types of CAD/CAM resin restorative materials, LAVA Ultimate (3M ESPE, St Paul, MN, USA), VITA Enamic (Vita Zahnfabrik H. Rauter, Bad $S\ddot{a}ckingen$, Germany), and Cerasmart (GC Corparation, Tokyo, Japan) were used for this study. CAD/CAM blocks were cut in 3-mm thickness slabs and divided into three groups; Group 1: control group (specimens polished with 600 grit SCI paper); Group 2: specimens sandblasted, silanized, and glazed with Optiglaze Color (GC); Group 3: glazed specimens subjected to 5000 thermocycles (n=15). The surface roughness ($R_a$ and $R_z$) was evaluated using a profilometer and a 3D scanning instrument. Data were analyzed using two-way ANOVA and Tukey's post- hoc test (P<.05). RESULTS. LAVA, VITA, and Cerasmart exhibited statistically similar $R_a$ and $R_z$ values for each group (P>.05). For VITA and Cerasmart, the specimens in Group 1 exhibited significantly higher $R_a$ values than Group 2 (P<.05). Group 1 ($0.502R_a$), Group 2 ($0.384R_a$), and Group 3 ($0.431R_a$) exhibited statistically similar $R_a$ values for LAVA (P=.062). After 5000 thermocycles, surface roughness values did not change significantly for glazed LAVA, VITA, and Cerasmart (P>.05). CONCLUSION. Glaze material Optiglaze Color makes CAD/CAM resin surfaces smooth and glazed CAD/CAM surfaces seem resistant to deterioration under 5000 thermocycles.

Keywords

References

  1. Duret F, Preston JD. CAD/CAM imaging in dentistry. Curr Opin Dent 1991;1:150-4.
  2. van Noort R. The future of dental devices is digital. Dent Mater 2012;28:3-12. https://doi.org/10.1016/j.dental.2011.10.014
  3. Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent 2007;98:389-404. https://doi.org/10.1016/S0022-3913(07)60124-3
  4. Mainjot AK, Dupont NM, Oudkerk JC, Dewael TY, Sadoun MJ. From artisanal to CAD-CAM blocks: State of the art of indirect composites. J Dent Res 2016;95:487-95. https://doi.org/10.1177/0022034516634286
  5. Ruse ND, Sadoun MJ. Resin-composite blocks for dental CAD/CAM applications. J Dent Res 2014;93:1232-4. https://doi.org/10.1177/0022034514553976
  6. Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater 2013; 29:419-26. https://doi.org/10.1016/j.dental.2013.01.002
  7. Blatz MB. Long-term clinical success of all-ceramic posterior restorations. Quintessence Int 2002;33:415-26.
  8. Kawai K, Urano M, Ebisu S. Effect of surface roughness of porcelain on adhesion of bacteria and their synthesizing glucans. J Prosthet Dent 2000;83:664-7. https://doi.org/10.1067/mpr.2000.107442
  9. Yilmaz C, Korkmaz T, Demirkoprulu H, Ergun G, Ozkan Y. Color stability of glazed and polished dental porcelains. J Prosthodont 2008;17:20-4.
  10. Weitman RT, Eames WB. Plaque accumulation on composite surfaces after various finising procedures. J Am Dent Assoc 1975;91:101-6. https://doi.org/10.14219/jada.archive.1975.0294
  11. Jones CS, Billington RW, Pearson GJ. The in vivo perception of roughness of restorations. Br Dent J 2004;196:42-5. https://doi.org/10.1038/sj.bdj.4810881
  12. Ikeda M, Matin K, Nikaido T, Foxton RM, Tagami J. Effect of surface characteristics on adherence of S. mutans biofilms to indirect resin composites. Dent Mater J 2007;26:915-23. https://doi.org/10.4012/dmj.26.915
  13. de Jager N, Feilzer AJ, Davidson CL. The influence of surface roughness on porcelain strength. Dent Mater 2000;16: 381-8. https://doi.org/10.1016/S0109-5641(00)00030-0
  14. Fischer H, Schafer M, Marx R. Effect of surface roughness on flexural strength of veneer ceramics. J Dent Res 2003;82: 972-5. https://doi.org/10.1177/154405910308201207
  15. Anusavice KJ, Shen C, Vermost B, Chow B. Strengthening of porcelain by ion exchange subsequent to thermal tempering. Dent Mater 1992;8:149-52. https://doi.org/10.1016/0109-5641(92)90072-K
  16. Anusavice KJ, Kakar K, Ferree N. Which mechanical and physical testing methods are relevant for predicting the clinical performance of ceramic-based dental prostheses? Clin Oral Implants Res 2007;18:218-31. https://doi.org/10.1111/j.1600-0501.2007.01460.x
  17. Jefferies SR. Abrasive finishing and polishing in restorative dentistry: a state-of-the-art review. Dent Clin North Am 2007;51:379-97. https://doi.org/10.1016/j.cden.2006.12.002
  18. Antonson SA, Yazici AR, Kilinc E, Antonson DE, Hardigan PC. Comparison of different finishing/polishing systems on surface roughness and gloss of resin composites. J Dent 2011;39:e9-17. https://doi.org/10.1016/j.jdent.2011.01.006
  19. Tekce N, Pala K, Tuncer S, Demirci M. The effect of surface sealant application and accelerated aging on posterior restorative surfaces: An SEM and AFM study. Dent Mater J 2017; 36:182-9. https://doi.org/10.4012/dmj.2016-173
  20. Flury S, Peutzfeldt A, Lussi A. Influence of surface roughness on mechanical properties of two computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic materials. Oper Dent 2012;37:617-24. https://doi.org/10.2341/11-391-L
  21. Bottino MC, Valandro LF, Kantorski KZ, Bressiani JC, Bottino MA. Polishing methods of an alumina-reinforced feldspar ceramic. Braz Dent J 2006;17:285-9. https://doi.org/10.1590/S0103-64402006000400004
  22. Perez Cdos R, Hirata RJ, da Silva AH, Sampaio EM, de Miranda MS. Effect of a glaze/composite sealant on the 3-D surface roughness of esthetic restorative materials. Oper Dent 2009;34:674-80. https://doi.org/10.2341/08-014-L
  23. Al-Wahadni A. An in vitro investigation into the surface roughness of 2 glazed, unglazed, and refinished ceramic materials. Quintessence Int 2006;37:311-7.
  24. Cilli R, de Mattos MC, Honorio HM, Rios D, de Araujo PA, Prakki A. The role of surface sealants in the roughness of composites after a simulated toothbrushing test. J Dent 2009; 37:970-7. https://doi.org/10.1016/j.jdent.2009.08.002
  25. Dede DO, Sahin O, Koroglu A, Yilmaz B. Effect of sealant agents on the color stability and surface roughness of nanohybrid composite resins. J Prosthet Dent 2016;116:119-28. https://doi.org/10.1016/j.prosdent.2015.11.024
  26. Sahin O, Dede DO, Koroglu A, Yilmaz B. Influence of surface sealant agents on the surface roughness and color stability of artificial teeth. J Prosthet Dent 2015;114:130-7. https://doi.org/10.1016/j.prosdent.2015.02.009
  27. Flury S, Diebold E, Peutzfeldt A, Lussi A. Effect of artificial toothbrushing and water storage on the surface roughness and micromechanical properties of tooth-colored CAD-CAM materials. J Prosthet Dent 2017;117:767-74. https://doi.org/10.1016/j.prosdent.2016.08.034
  28. Tuncer S, Demirci M, Tiryaki M, Unlu N, Uysal O. The effect of a modeling resin and thermocycling on the surface hardness, roughness, and color of different resin composites. J Esthet Restor Dent 2013;25:404-19. https://doi.org/10.1111/jerd.12063
  29. Hahnel S, Henrich A, Burgers R, Handel G, Rosentritt M. Investigation of mechanical properties of modern dental composites after artificial aging for one year. Oper Dent 2010;35:412-9. https://doi.org/10.2341/09-337-L
  30. Nguyen JF, Migonney V, Ruse ND, Sadoun M. Resin composite blocks via high-pressure high-temperature polymerization. Dent Mater 2012;28:529-34. https://doi.org/10.1016/j.dental.2011.12.003
  31. Sideridou I, Tserki V, Papanastasiou G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 2002;23:1819-29. https://doi.org/10.1016/S0142-9612(01)00308-8
  32. Sideridou ID, Karabela MM. Sorption of water, ethanol or ethanol/water solutions by light-cured dental dimethacrylate resins. Dent Mater 2011;27:1003-10. https://doi.org/10.1016/j.dental.2011.06.007
  33. Yoshihara K, Nagaoka N, Maruo Y, Nishigawa G, Irie M, Yoshida Y, Van Meerbeek B. Sandblasting may damage the surface of composite CAD-CAM blocks. Dent Mater 2017; 33:e124-e135. https://doi.org/10.1016/j.dental.2016.12.003

Cited by

  1. Effect of Protective Coating on Surface Properties and Candida albicans Adhesion to Denture Base Materials vol.29, pp.1, 2018, https://doi.org/10.1111/jopr.13118
  2. Review on Polymer, Ceramic and Composite Materials for CAD/CAM Indirect Restorations in Dentistry-Application, Mechanical Characteristics and Comparison vol.14, pp.7, 2018, https://doi.org/10.3390/ma14071592
  3. Phosphate group adsorption capacity of inorganic elements affects bond strength between CAD/CAM composite block and luting agent vol.40, pp.2, 2018, https://doi.org/10.4012/dmj.2020-029
  4. Effect of thermocycling on the surface properties of resin-matrix CAD-CAM ceramics after different surface treatments vol.117, pp.None, 2021, https://doi.org/10.1016/j.jmbbm.2021.104401
  5. Surface Characterisation of Dental Resin Composites Related to Conditioning and Finishing vol.13, pp.23, 2018, https://doi.org/10.3390/polym13234236
  6. Effect of surface treatment and glazing in the two-body wear resistance of a hybrid ceramic after polymeric staining application vol.35, pp.23, 2021, https://doi.org/10.1080/01694243.2021.1892427