DOI QR코드

DOI QR Code

초저온 냉각튜브 내 수소기체의 액체수소로의 상변환 분석

Analysis of Gas-to-Liquid Phase Transformation of Hydrogen in Cryogenic Cooling Tube

  • Lee, Dae-Won (Department of Chemical Engineering, Kangwon National University) ;
  • Nguyen, Hoang Hai (Department of Chemical Engineering, Kangwon National University) ;
  • So, Myeong-Ki (Department of Nano Applied Engineering, Kangwon National University) ;
  • Nah, In-Wook (Green City Technology Institute, Korea Institute of Science and Technology) ;
  • Park, Dong-Wha (Department of Chemical Engineering, Inha University) ;
  • Kim, Kyo-Seon (Department of Chemical Engineering, Kangwon National University)
  • 투고 : 2017.06.20
  • 심사 : 2017.08.18
  • 발행 : 2018.02.01

초록

에너지 위기 시대를 맞이하여 수소에너지가 가장 가능성 있는 대체에너지 중의 하나로 고려되고 있다. 액체수소는 기체수소와 비교하여 단위 부피당 에너지 밀도가 월등히 높으며 수소에너지의 탁월한 저장 방법으로 간주되고 있다. 본 연구에서는 2 상 모델에 기초를 둔 Navier-Stokes 식을 전산유체역학 프로그램을 이용하여 풀었으며, 초저온 냉각 튜브를 통과하면서 기체수소가 액화되는 과정을 분석하였다. 열전도율이 높은 구리관을 초저온 냉각을 위한 관의 재질로 가정하였다. 기체수소의 유입속도를 5 cm/s, 10 cm/s, 20 cm/s로 변화시키면서 냉각튜브 내 유체 온도분포, 축방향 및 반경방향 유체 속도, 기체 및 액체 수소 부피분율 분포를 각각 분석하였다. 본 연구 결과는 향후 액체수소 제조를 위한 기체수소 초저온 냉각기의 설계 및 제작을 위한 기초자료로 활용이 될 것으로 기대된다.

Under the era of energy crisis, hydrogen energy is considered as one of the most potential alternative energies. Liquid hydrogen has much higher energy density per unit volume than gas hydrogen and is counted as the excellent energy storage method. In this study, Navier-Stokes equations based on 2-phase model were solved by using a computational fluid dynamics program and the liquefaction process of gaseous hydrogen passing through a cryogenic cooling tube was analyzed. The copper with high thermal conductivity was assumed as the material for cryogenic cooling tube. For different inlet velocities of 5 m/s, 10 m/s and 20 m/s for hydrogen gas, the distributions of fluid temperature, axial and radial velocities, and volume fractions of gas and liquid hydrogens were compared. These research results are expected to be used as basic data for the future design and fabrication of cryogenic cooling tube to transform the hydrogen gas into liquid hydrogen.

키워드

참고문헌

  1. Simpson, A. P. and Lutz, A. E., "Exergy Analysis of Hydrogen Production Via Steam Methane Reforming," Int. J. Hydrogen Energy, 32, 4811-4820(2007). https://doi.org/10.1016/j.ijhydene.2007.08.025
  2. Stojic, D. L., Marceta, M. P., Sovilj, S. P. and Miljanic, S. S., "Hydrogen Generation From Water Electrolysis−possibilities of Energy Saving," J. Power. Sources., 118, 315-319(2003). https://doi.org/10.1016/S0378-7753(03)00077-6
  3. Yildiz, B. and Kazimi, M. S., "Efficiency of Hydrogen Production Systems Using Alternative Nuclear Energy Technologies," Int. J. Hydrogen Energy, 31, 77-92(2006). https://doi.org/10.1016/j.ijhydene.2005.02.009
  4. Kang, K., Azargohar, R., Dalai, A. K. and Wang, H., "Hydrogen Production From Lignin, Cellulose and Waste Biomass via Supercritical Water Gasification: Catalyst Activity and Process Optimization Study," Energy Conversion and Management, 117, 528-537(2016). https://doi.org/10.1016/j.enconman.2016.03.008
  5. Ding, J. R. and Kim, K. S., "Facile Growth of Nanowire-structured $WO_3$ Thin Films for Photoelectrochemical Water Splitting," AICHE J., 62, 421-428(2016). https://doi.org/10.1002/aic.15105
  6. Kim, D. J., Han, G. B., Park, N. K., Lee, T. J. and Kang, M. S., "Hydrogen Production from Splitting of Methanol/Water Solution Using Perovskite Structured $Nb_xSrTi_{1-x}O_3$ Photocatalyts," Korean Chem. Eng. Res., 51(4), 513-517(2013). https://doi.org/10.9713/kcer.2013.51.4.513
  7. Zeng, K. and Zhang, D., "Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications," Prog. Energy. Combust. Sci., 36, 307-326(2010). https://doi.org/10.1016/j.pecs.2009.11.002
  8. Acoves, S. M., Espinosa-Loza, F., Ledesma-Orozco, E., Ross, T. O., Weisberg, A. H., Brunner, T. C. and Kircher, O., "High-density Automotive Hydrogen Storage with Cryogenic Capable Pressure Vessels," Int. J. Hydrogen Energy, 35, 1219-1226(2010). https://doi.org/10.1016/j.ijhydene.2009.11.069
  9. Khorasany, R. M. H., Singh, Y., Sadeghi, A. A., Kjeang, E., Wang, G. G. and Rajapakse, R. K. N. D., "Fatigue Properties of Catalyst Coated Membranes for Fuel Cells: Ex-situ Measurements Supported by Numerical Simulations," Int. J. Hydrogen Energy, 41, 8992-9003(2016). https://doi.org/10.1016/j.ijhydene.2016.04.042
  10. Das, T., Kweon, S. C., Chol, J. G., Kim, S. Y. and Oh, I. H., "Spin Conversion of Hydrogen over $LaFeO_3/Al_2O_3$ Catalysts at Low Temperature: Synthesis, Characterization and Activity," Int. J. of the Hydrogen Energy, 40, 383-391(2015). https://doi.org/10.1016/j.ijhydene.2014.10.137
  11. Kang, S. K., Powder Technology, Hoejungdang, Seoul (1995).
  12. Song, Y. S. and Katz, J. L., "A Study on Heterogeneous Nucleation: The Condensation of Water Vapor on n-Hexadecane," Korean Chem. Eng. Res., 40(1), 34-42(2002).
  13. Lee, D. W., Nguyen, H. H., Nasonova, A., Oh, I. H. and Kim, K. S., "Analysis on Fluid Dynamics in the Cooling Tube for Manufacture of Liquid Hydrogen," Trans. of the Korean Hydrogen and New Energy Society, 26, 301-307(2015). https://doi.org/10.7316/KHNES.2015.26.4.301
  14. Geankoplis, C. J., "Transport Processes and Separation Process Principles (include unit operation)," Pearson education international, 4th, 193-209(2003).