DOI QR코드

DOI QR Code

탄소나노튜브가 첨가된 전기방사 멤브레인의 미세입자 제거 성능 비교에 관한 연구

Study on Performance Comparison in Carbon Nanotube Embedded Electrospun Membranes for Particulate Matter Removal

  • 구민경 (창원대학교 화공시스템공학과) ;
  • 김동완 (창원대학교 화공시스템공학과) ;
  • 한상일 (창원대학교 화공시스템공학과)
  • Gu, Minkyung (Department of Chemical Engineering, Changwon National University) ;
  • kim, Dongwan (Department of Chemical Engineering, Changwon National University) ;
  • Han, Sangil (Department of Chemical Engineering, Changwon National University)
  • 투고 : 2017.09.14
  • 심사 : 2017.10.25
  • 발행 : 2018.02.01

초록

미세입자가 미치는 부정적인 영향으로 인해 관심이 증가하여 공기 중 미세입자를 제거할 수 있는 멤브레인 필터의 성능향상을 위해 다양한 방법을 도입하여 왔다. 필터 섬유 제조 기술 중 전기 방사 기술이 최근에 가장 주목을 받고 있으며, 수 백 nm에서 수 십 ${\mu}m$ 까지의 균일한 직경의 섬유를 제조 할 수 있는 장점을 가진다. 전기 방사 기술로 생성한 섬유는 초극세 섬유로서 섬유의 생성과 동시에 3차원의 네트워크로 적층된 형태의 다공성 웹은 초박막, 초경량이며 기존 섬유에 비해 부피 대비 표면적비가 높고, 높은 기공도를 가지는 멤브레인을 제조 할 수 있으므로, 전기 방사 멤브레인의 여과 필터 성능이 크게 향상 될 것으로 예상이 된다. 본 연구에서는 polystyrene, cellulose acetate 멤브레인 필터를 이용하여 섬유 두께, 탄소나노튜브의 조성비에 따른 필터로서의 여과성능을 살펴보았으며, 필터소재의 성능 비교실험 결과 적정량의 CNT 소재의 첨가로 인해 필터의 여과 성능이 향상되는 것을 알 수 있다.

There have been a lot of study to improve the performance of membrane filters as the removal of particulate matter has been of great interest due to the negative effects. Among the membrane fabrication techniques, the electrospinning technique is the most promising because it can produce uniform fibers ranging from nano to micrometer size. The electrospun membranes will greatly improve the filtration performance due to the high ratio of surface area to volume and the high porosity. In the present study, polystyrene (PS) and cellulose acetate (CA) polymers were used to produce the membranes with carbon nanotube (CNT), showing the filtration performances were improved with the optimal amounts of CNT.

키워드

참고문헌

  1. Jeon, B., "Meteorological Characteristics of the Wintertime High PM10 Concentration Episodes in Busan," Journal of the Environmental Sciences, 21(7), 815-824(2012). https://doi.org/10.5322/JES.2012.21.7.815
  2. Bae, H., "Effects of Short-term Exposure to PM10 and PM2.5 on Mortality in Seoul," J. Environ. Health Sci., 40(5), 346-354(2014).
  3. Park, Y., "Particulate Matter Contamination and Control Technology in Indoor Air Condition," J. Korean. Soc. Living. Environ. Sys., 9(2), 122-128(2002).
  4. Wang, N., Si, Y., Wang, N., Sun G., El-Newehy, M., Al-Deyab, S. S. and Ding, B., "Multilevel Structured Polyacrylonitrile/silica Nanofibrous Membranes for High-performance Air Filtration," Sep. Pur. Technol., 126, 44-51(2014). https://doi.org/10.1016/j.seppur.2014.02.017
  5. Mottaghitalab, V. and Haghi, A. K., "A Study on Electrospinning of Polyacrylonitrile Nanofibers," Korean J. Chem. Eng., 28(1), 114-118(2011). https://doi.org/10.1007/s11814-010-0348-7
  6. Shin, D., Jin, E., Lee, Y., Kwon, W., Kim, Y., Kim, S. and Riu, D., "$TiO_2-SiO_2$ Nanocomposite Fibers Prepared by Electrospinning of Ti-PCS Mixed Solution," Korean Chem. Eng. Res., 53(3), 276-281(2015). https://doi.org/10.9713/kcer.2015.53.3.276
  7. Cavaliere, S., Subianto, S., Savych, I., Jones, D. J. and Roziere, J., "Electrospinning: Designed Architectures for Energy Conversion and Storage Devices," Energy Environ. Sci., 4(12), 4761-4785(2011). https://doi.org/10.1039/c1ee02201f
  8. Sill, T. J. and Recum, H. A. von, "Electrospinning: Applications in Drug Delivery and Tissue Engineering," Biomaterials, 29(13), 1989-2006(2008). https://doi.org/10.1016/j.biomaterials.2008.01.011
  9. Su, Z., Ding, J. and Wei, G., "Electrospinning: a Facile Technique for Fabricating Polymeric Nanofibers Doped with Carbon Nanotubes and Metallic Nanoparticles for Sensor Applications," RSC Adv., 4, 52598-52610(2014). https://doi.org/10.1039/C4RA07848A
  10. Gupta, P., Elkins, C., Long, T. E. and Wilkes, G. L., "Electrospinning of Linear Homopolymers of Poly(methyl methacrylate): Exploring Relationships Between Fiber Formation, Viscosity, Molecular Weight and Concentration in a Good Solvent," Polymer, 46(13), 4799-4810(2005). https://doi.org/10.1016/j.polymer.2005.04.021
  11. Han, S. and Rutledge, G. C., "Thermoregulated Gas Transport Through Electrospun Nanofiber Membranes," Chem. Eng. Sci., 123, 557-563(2015). https://doi.org/10.1016/j.ces.2014.11.040
  12. Reneker, D. H. and Yarin, A. L., "Electrospinning Jets and Polymer Nanofibers," Polymer, 49, 2387-2425(2008). https://doi.org/10.1016/j.polymer.2008.02.002
  13. Lee, M. H., Song, W., Kim, Y., Jang, S. W., Choi, W. C. and Park, C., "Reinforcing Polymer Nanofibers Through Incorporation of Multi-walled Carbon Nanotubes," Applied Science and Convergence Technology, 21(1), 41-47(2012).
  14. Park, S., Kim, J. and Han, S., "Development of Electrospun Cellulose Acetate Membranes using Carbon Nanotubes for Filtration of Particulate Matter in the Air," Korean Chem. Eng. Res., 55(1), 68-73(2017). https://doi.org/10.9713/KCER.2017.55.1.68
  15. Zhang, Y., Yuan, S., Feng, X., Li, H., Zhou, J. and Wang, B., "Preparation of Nanofibrous Metal−Organic Framework Filters for Efficient Air Pollution Control," J. Am. Chem. Soc., 138, 5785-5788(2016). https://doi.org/10.1021/jacs.6b02553
  16. Liu, C., Hsu, P., Lee, H., Ye, M., Zheng, G., Liu, N., Li, W. and Cui, Y., "Transparent Air Filter for High-efficiency PM2.5 Capture," Nat. Commun. 6, 6205(2015). https://doi.org/10.1038/ncomms7205
  17. Schneider, C. A., Rasband, W. S. and Eliceiri, K. W., "NIH Image to ImageJ: 25 years of Image Analysis," Nat. Methods, 9(7), 671-675(2012). https://doi.org/10.1038/nmeth.2089