DOI QR코드

DOI QR Code

실리콘-탄소나노튜브-탄소 복합체 제조 및 리튬이온전지 응용

Synthesis of Si-CNT-C Composites and Their Application to Lithium Ion Battery

  • 김찬미 (한국지질자원연구원 자원활용연구센터) ;
  • 김선경 (한국지질자원연구원 자원활용연구센터) ;
  • 장한권 (한국지질자원연구원 자원활용연구센터) ;
  • 길대섭 (한국지질자원연구원 자원활용연구센터) ;
  • 장희동 (한국지질자원연구원 자원활용연구센터)
  • Kim, Chan Mi (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Sun Kyung (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Chang, Hankwon (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Kil, Dae sup (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Jang, Hee Dong (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2017.09.15
  • 심사 : 2018.01.03
  • 발행 : 2018.02.01

초록

리튬이온전지의 음극재로 높은 이론적인 용량과 낮은 방전 전위 및 무독성을 가진 실리콘이 높은 관심을 받고 있다. 본 연구에서는 리튬이온전지의 고효율 음극재로 활용을 위한 실리콘-탄소나노튜브-탄소(Si-CNT-C) 복합체를 제조하였다. 복합체 제조를 위해서는 에어로졸 자기조립과 후 열처리 공정을 사용하였다. 제조된 Si-CNT-C 복합체는 구형이었으며 평균 입자크기는 $2.72{\mu}m$이었다. 복합체의 크기는 실리콘 및 탄소나노튜브의 농도가 증가할수록 커지는 것을 확인하였다. Si-CNT-C 복합체는 탄소나노튜브와 글루코스에서 탄화된 탄소가 실리콘 입자들을 중심으로 표면에 부착된 형태이었다. 제조된 Si-CNT-C 복합체는 전기화학 분석을 통해 순수한 실리콘보다 우수한 사이클 성능을 보여주고 있음을 확인하였다.

Silicon has attracted extensive attention due to its high theoretical capacity, low discharge potential and non-toxicity as anode material for lithium ion batteries. In this study, Si-CNT-C composites were fabricated for use as a high-efficiency anode material in a lithium ion battery. Aerosol self-assembly and post-heat treatment processes were employed to fabricate the composites. The morphology of the Si-CNT-C composites was spherical and an average particle size was $2.72{\mu}m$. The size of the composite increased as concentration of Si and CNT increased in the precursor solution. In the Si-CNT-C composites, CNT and C carbonized from glucose were attached to the surface of Si particles. Electrochemical measurement showed that the cycle performance of Si-CNT-C composites was better than that of silicon particles.

키워드

참고문헌

  1. Armand, M. and Tarascon, J. M., "Building Better Batteries," Nature, 451, 652-657(2008). https://doi.org/10.1038/451652a
  2. Wu, H. and Cui, Y., "Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries," Nano Today, 7, 414-429(2012). https://doi.org/10.1016/j.nantod.2012.08.004
  3. Bruce, P. G., Scrosati, B. and Tarascon, J. M., "Nanomaterials for Rechargeable Lithium Batteries," Angew. Chem.-Int. Edit., 47, 2930-2946(2008). https://doi.org/10.1002/anie.200702505
  4. Guo, Y. G., Hu, J. S. and Wan, L. J., "Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices," Adv. Mater., 20, 2878-2887(2008). https://doi.org/10.1002/adma.200800627
  5. Xue, L., Xu, G., Li, Y., Li, S., Fu, K., Shi, Q. and Zhang, X., "Carbon-coated Si Nanoparticles Dispersed in Carbon Nanotube Networks as Anode Material for Lithium-ion Batteries," ACS Appl. Mater. Interfaces, 5, 21-25(2012).
  6. Xu, Y., Liu, Q., Zhu, Y., Liu, Y., Langrock, A., Zachariah, M. R. and Wang, C., "Uniform Nano-Sn/C Composite Anodes for Lithium ion Batteries," Nano Lett., 13, 470-474(2013). https://doi.org/10.1021/nl303823k
  7. Goodenough, J. B. and Park, K. S., "The Li-ion Rechargeable Battery: a Perspective," J. Am. Chem. Soc., 135, 1167-1176(2013). https://doi.org/10.1021/ja3091438
  8. Li, H. and Zhou, H., "Enhancing the Performances of Li-ion Batteries by Carbon-coating: Present and Future," Chem. Commun., 48, 1201-1217(2012). https://doi.org/10.1039/C1CC14764A
  9. Esmanski, A. and Ozin, G. A., "Silicon Inverse-Opal-Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries," Adv. Funct. Mater., 19, 1999-2010(2009). https://doi.org/10.1002/adfm.200900306
  10. Kohandehghan, A., Kalisvaart, P., Kupsta, M., Zahiri, B., Amirkhiz, B. S., Li, Z., Mermarzadeh, E. L., Bendersky, L. A., and Mitlin, D., "Magnesium and Magnesium-silicide Coated Silicon Nanowire Composite Anodes for Lithium-ion Batteries," J. Mater. Chem. A, 1, 1600-1612(2013). https://doi.org/10.1039/C2TA00769J
  11. Xiao, J., Xu, W., Wang, D., Choi, D., Wang, W., Li, X., Graff., G. L. and Zhang, J. G., "Stabilization of Silicon Anode for Li-ion Batteries," J. Electrochem. Soc., 157, A1047-A1051(2010). https://doi.org/10.1149/1.3464767
  12. Oumellal, Y., Delpuech, N., Mazouzi, D., Dupre, N., Gaubicher, J., Moreau, P., Soudan, P., Lestriez, B. and Guyomard, D., "The Failure Mechanism of Nano-sized Si-based Negative Electrodes for Lithium ion Batteries," J. Mater. Chem., 21, 6201-6208(2011). https://doi.org/10.1039/c1jm10213c
  13. Beaulieu, L. Y., Eberman, K. W., Turner, R. L., Krause, L. J. and Dahn, J. R., "Colossal Reversible Volume Changes in Lithium Alloys," Electrochem. Solid State Lett., 4, A137-A140(2001). https://doi.org/10.1149/1.1388178
  14. Kang, K. Y., Shin, D. O., Lee, Y. G. and Kim K. M., "Lithium Battery Anode Properties of Ball-Milled Graphite-Silicon Composites," Korean Chem. Eng. Res, 51(4), 411-417(2013). https://doi.org/10.9713/kcer.2013.51.4.411
  15. Yen, J. P., Chang, C. C., Lin, Y. R., Shen, S. T. and Hong, J. L., "Sputtered Copper Coating on Silicon/graphite Composite Anode for Lithium ion Batteries," J. Alloy. Compd., 598, 184-190(2014). https://doi.org/10.1016/j.jallcom.2014.01.230
  16. Wu, J., Zhu, Z., Zhang, H., Fu, H., Li, H., Wang, A., Zhang, H. and Hu, Z., "A Novel Nano-structured Interpenetrating Phase Composite of Silicon/graphitetin for Lithium-ion Rechargeable Batteries Anode Materials," J. Alloy. Compd., 596, 86-91(2014). https://doi.org/10.1016/j.jallcom.2014.01.187
  17. Terranova, M. L., Orlanducci, S., Tamburri, E., Guglielmotti, V. and Rossi, M., "Si/C Hybrid Nanostructures for Li-ion Anodes: An Overview," J. Power Sources, 246, 167-177(2014). https://doi.org/10.1016/j.jpowsour.2013.07.065
  18. Lee, D. H., Seo, S. D., Lee, G. H., Hong, H. S. and Kim, D. W., "One-pot Synthesis of $Fe_3O_4$/Fe/MWCNT Nanocomposites Via Electrical Wire Pulse for Li ion Battery Electrodes," J. Alloy. Compd., 606, 204-207(2014). https://doi.org/10.1016/j.jallcom.2014.04.023
  19. Wang, J., Wang, J. Z., Sun, Z. Q., Gao, X. W., Zhong, C., Chou, S. L. and Liu, H. K., "A Germanium/single-walled Carbon Nanotube Composite Paper as a Free-standing Anode for Lithium-ion Batteries," J. Mater. Chem. A, 2, 4613-4618(2014). https://doi.org/10.1039/c3ta14934j
  20. Zhai, C., Du, N., Zhang, H., Yu, J., Wu, P., Xiao, C. and Yang, D., "Assembling CoSn3 Nanoparticles on Multiwalled Carbon Nanotubes with Enhanced Lithium Storage Properties," Nanoscale, 3, 1798-1801(2011). https://doi.org/10.1039/c0nr01008a
  21. Zhai, C., Du, N., Zhang, H., Yu, J. and Yang, D., "Multiwalled Carbon Nanotubes Anchored with SnS2 Nanosheets as High-performance Anode Materials of Lithium-ion Batteries," ACS Appl. Mater. Interfaces, 3, 4067-4074(2011). https://doi.org/10.1021/am200933m
  22. Frackowiak, E., Gautier, S., Gaucher, H., Bonnamy, S. and Beguin, F., "Electrochemical Storage of Lithium in Multiwalled Carbon Nanotubes," Carbon, 37, 61-69(1999). https://doi.org/10.1016/S0008-6223(98)00187-0
  23. Claye, A. S., Fischer, J. E., Huffman, C. B., Rinzler, A. G. and Smalley, R. E., "Solid-State Electrochemistry of the Li Single Wall Carbon Nanotube System," J. Electrochem. Soc., 147(8), 2845-2852(2000). https://doi.org/10.1149/1.1393615
  24. Kim, B. G., Shin, W. H., Lim, S. Y., Kong, B. S. and Choi, J. W., "A Carbon Nanotubes-Silicon Nanoparticles Network for High Performance Lithium Rechargeable Battery Anodes," J. Electrochem. Sci. Technol., 3, 116-122(2012). https://doi.org/10.5229/JECST.2012.3.3.116
  25. Wang, J., Liu, D. H., Wang, Y. Y., Hou, B. H., Zhang, J. P., Wang, R. S. and Wu, X. L., "Dual-carbon Enhanced Silicon-based Composite as Superior Anode Material for Lithium ion Batteries," J. Power Sources, 307, 738-745(2016). https://doi.org/10.1016/j.jpowsour.2016.01.040
  26. Oh, J. M., Kim, H., Chang, H., Lee, B. K., Jang, H. D. and Lim, J. W., "Preparation of 6N Grade Silicon Ingot by Combined Purification Processes from Waste Silicon Cutting Sludge," Int. J. Mater. Res., 106, 937-942(2015). https://doi.org/10.3139/146.111272
  27. Jang, H. D., Kim, H., Kil, D. S. and Chang, H., "A Novel Recovery of Silicon Nanoparticles from a Waste Silicon Sludge," J. Nanosci. Nanotechnol., 13, 2334-2338(2013). https://doi.org/10.1166/jnn.2013.6909
  28. Byon, H. R., Lee, S. W., Chen, S., Hammond, P. T. and Shao-Horn, Y., "Thin Films of Carbon Nanotubes and Chemically Reduced Graphenes for Electrochemical Micro-capacitors," Carbon, 49, 457-467(2011). https://doi.org/10.1016/j.carbon.2010.09.042
  29. Jang, H. D., Kim, H., Chang, H., Kim, J., Roh, K. M., Choi, J. H., Cho, B. G., Park, E., Kim, H., Luo, J. and Huang, J., "Aerosol-assisted Extraction of Silicon Nanoparticles from Wafer Slicing Waste for Lithium ion Batteries," Sci Rep, 5, 9431/1-5(2015).