DOI QR코드

DOI QR Code

북극진동의 자기상관 특성 및 우리나라 장마 및 태풍과의 교차상관 특성 평가

Evaluation of autocorrelation characteristics of arctic oscillation and its cross-correlation to the monsoon and typhoon

  • 이현욱 (고려대학교 건축사회환경공학부) ;
  • 송성욱 (고려대학교 건축사회환경공학부) ;
  • 유철상 (고려대학교 건축사회환경공학부)
  • Lee, Hyunwook (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Song, Sunguk (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Yoo, Chulsang (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 투고 : 2018.07.12
  • 심사 : 2018.10.29
  • 발행 : 2018.12.31

초록

본 연구에서는 북극진동이 우리나라에 미치는 영향을 파악하고자 북극진동지수(AOI)와 북태평양에서 발생한 태풍의 개수 및 우리나라에 영향을 준 태풍의 개수, 또한 장마기간 중 총강수량 및 장마기간 중 강수일수와의 교차상관분석을 시도하였다. AOI 자료는 월단위 형태로 존재하나 교차 상관 분석에는 1월을 중심으로 한 평균 자료와 봄, 여름, 가을, 겨울의 계절자료를 이용하였다. 장마 특성 및 태풍 특성 자료는 모두 연 단위자료이다. 본 연구에서는 AOI 및 태풍, 장마 자료의 가용성을 고려하여 1961년에서 2016년 사이의 자료를 이용하였다. 본 연구에서의 결과를 종합해 보면, 북극진동은 우리나라의 장마 특성에 약한 수준이나 유의하게 영향을 미치고 있음을 확인할 수 있었다. 그러나 그 정도는 전체기간에 대해 일정하지 않으며 시기에 따라 크게 다른 것으로 나타난다. 예를 들어, 최근 10년간 북극진동이 장마에 미친 영향은 교차상관계수로 0.8 이상이다. 그러나 그 전 30년간은 통계학적으로 유의한 영향은 없었다. 이와는 반대로 북극진동이 우리나라에 영향을 준 태풍의 개수에 미치는 영향은 전체적으로는 유의하지 않은 것으로 나타난다. 공교롭게도 부분적으로 보면 이 역시 기간에 따라 유의한 영향과 유의하지 않은 영향이 반복적으로 교차하는 모습을 보인다. 즉, 기간에 따라 북극진동의 영향은 비정상적으로 크게 변동하는 모습을 보인다. 또한, 북극진동이 우리나라의 장마와 태풍에 미치는 영향이 과거 1960년대에서 2000년대까지 서로 교차되는 특성을 보여 왔다는 점에 주목할 필요가 있다. 그러나 공교롭게도 2010년대에 들어서면서 장마에의 영향과 태풍에의 영향이 둘 다 증가하는 형태로 바뀐 것으로 보인다.

This study investigated the effect of arctic oscillation by analyzing the cross-correlation characteristics between the arctic oscillation index (AOI) and the number of typhoons occurred in the North Pacific, the number of typhoons affecting South Korea, total rainfall amount and number of rainy days during the monsoon season in South Korea. For this analysis, the monthly AOI data were transformed into the average data about January and seasonal AOI data representing winter, spring, fall and winter. The typhoon data and monsoon data were all those collected annually. The data period for this analysis was determined to be from 1961 to 2016 by considering the data available. Based on this analysis, it was found that the arctic oscillation has a weak but statistically significant effect on the monsoon characteristics of South Korea. However, the level of effect was not consistent over the data period but varied significantly periodically. For example, the cross-correlation coefficient derived for the recent 10 years was estimated to be higher than 0.8, but was simply insignificant during the 30 years before the last decade. The overall effect of arctic oscillation on the occurrence of typhoon was found to be statistically insignificant, but was also fluctuating periodically to show somewhat significant effect. Finally, it should be mentioned that the effect of arctic oscillation on the typhoon and monsoon had been changing by turns from 1960s to 2000s. However, in the 2010s, it happened that the effect of arctic oscillation has become significant on both typhoon and monsoon in South Korea.

키워드

SJOHCI_2018_v51n12_1247_f0001.png 이미지

Fig. 1. Time series plot of monthly arctic oscillation Index (AOI(1)) and its 12-month moving average (AOI(12))

SJOHCI_2018_v51n12_1247_f0002.png 이미지

Fig. 2. Comparison of box plots of monthly AOI

SJOHCI_2018_v51n12_1247_f0003.png 이미지

Fig. 3. Time series of rainfall amount and rainy days during the monsoon in South Korea

SJOHCI_2018_v51n12_1247_f0004.png 이미지

Fig. 4. Time series of annual number of typhoons occurred in the North Pacific and annual number of typhoons affecting South Korea

SJOHCI_2018_v51n12_1247_f0005.png 이미지

Fig. 5. Comparison of 3-, 5-, 7- and 9-month-average AOI time series (averaging was done around January)

SJOHCI_2018_v51n12_1247_f0006.png 이미지

Fig. 6. Comparison of seasonal AOI time series

SJOHCI_2018_v51n12_1247_f0007.png 이미지

Fig. 7. Autocorrelation functions of monthly AOI and 12-month moving average AOI time series

SJOHCI_2018_v51n12_1247_f0008.png 이미지

Fig. 8. Autocorrelation functions of seasonal and average AOI time series

SJOHCI_2018_v51n12_1247_f0009.png 이미지

Fig. 9. Autocorrelation functions of rainfall amount and rainy days during the monsoon in South Korea

SJOHCI_2018_v51n12_1247_f0010.png 이미지

Fig. 10. Autocorrelation functions of the number of typhoons occurred in the North Pacific (Typhoon_NP) and the number of typhoons affecting South Korea (Typhoon_KR)

SJOHCI_2018_v51n12_1247_f0011.png 이미지

Fig. 11. Cross correlations between AOI and rainfall amount during the monsoon in South Korea

SJOHCI_2018_v51n12_1247_f0012.png 이미지

Fig. 12. Cross correlations between AOI and rainy days during the monsoon in South Korea

SJOHCI_2018_v51n12_1247_f0013.png 이미지

Fig. 13. Cross correlations between AOI and number of typhoons occurred in the North Pacific

SJOHCI_2018_v51n12_1247_f0014.png 이미지

Fig. 14. Cross correlations between AOI and number of typhoons affecting South Korea

SJOHCI_2018_v51n12_1247_f0015.png 이미지

Fig. 15. Cross correlations between average AOI and characteristics of monsoon and typhoon

SJOHCI_2018_v51n12_1247_f0016.png 이미지

Fig. 16. Cross correlations between seasonal AOI and characteristics of monsoon and typhoon

Table 1. Means and standard deviations of monthly AOI used in this study (1961~2016)

SJOHCI_2018_v51n12_1247_t0001.png 이미지

Table 2. Means and standard deviations of average and seasonal AOI data

SJOHCI_2018_v51n12_1247_t0002.png 이미지

참고문헌

  1. Ahn, J. J., and Kim, H. J. (2005). "Correlations between large-scale circulation patterns and temperature and precipitation over Busan." Asia-Pacific Journal of Atmospheric Sciences, Vol. 41, No. 6, pp. 1101-1110.
  2. Bingyi, W., and Jia, W. (2002). "Possible impacts of winter Arctic Oscillation on Siberian high, the East Asian winter monsoon and sea-ice extent." Advances in Atmospheric Sciences, Vol. 19, No. 2, pp. 297-320. https://doi.org/10.1007/s00376-002-0024-x
  3. Cai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., and Jin, F. F. (2014). "Increasing frequency of extreme El Nino events due to greenhouse warming." Nature Climate Change, Vol. 4, No. 2, p. 111. https://doi.org/10.1038/nclimate2100
  4. Cai, W., Wang, G., Santoso, A., McPhaden, M. J., Wu, L., Jin, F. F., Timmermann A., Collins, M., Vecchi, G., Lengaigne, M., England, M. H., Dommenget, D., Takahashi, K., and Guilyardi, E. (2015). "Increased frequency of extreme La Nina events under greenhouse warming." Nature Climate Change, Vol. 5, No. 2, pp. 132-137. https://doi.org/10.1038/nclimate2492
  5. Cha, E. J., Jhun, J. G., and Chung, H. S. (1999). "A study on characteristics of climate in South Korea for El Nino/La Nina years." Journal of Korean Meteorological Society, Vol. 35, pp. 98-117.
  6. Chen, S., Chen, W., and Wei, K. (2013). "Recent trends in winter temperature extremes in eastern China and their relationship with the Arctic Oscillation and ENSO." Advances in Atmospheric Sciences, Vol. 30, No. 6, pp. 1712-1724. https://doi.org/10.1007/s00376-013-2296-8
  7. Choi, K. S., and Byun, H. R. (2010). "Possible relationship between western North Pacific tropical cyclone activity and Arctic Oscillation." Theoretical and Applied Climatology, Vol. 100, pp. 261-274. https://doi.org/10.1007/s00704-009-0187-9
  8. Choi, K. S., and Kim, T. R. (2010b). "Change of TC activity around Korea by Arctic Oscillation phase." Atmosphere, Vol. 20, pp. 387-398.
  9. Choi, K. S., and Kim, T. R. (2011). "Development of a diagnostic index on the approach of typhoon affecting Korean Peninsula." Journal of the Korean Earth Science Society, Vol. 32, No. 4, pp. 347-359. https://doi.org/10.5467/JKESS.2011.32.4.347
  10. Chu, P. S. (2004). "ENSO and tropical cyclone activity." Hurricanes and typhoons: Past, present, and potential, Edited by Richard J. M,, and Liu K. B., Columbia University Press, New York, N.Y., pp. 297-332.
  11. Chung, C., and Nigam, S. (1999). "Asian summer monsoon-ENSO feedback on the Cane-Zebiak model ENSO." Journal of Climate, Vol. 12, No. 9, pp. 2787-2807. https://doi.org/10.1175/1520-0442(1999)012<2787:ASMEFO>2.0.CO;2
  12. Clark, J. D., and Chu, P. S. (2002). "Interannual variation of tropical cyclone activity over the central North Pacific." Journal of the Meteorological Society of Japan, Vol. 80, No. 3, pp. 403-418. https://doi.org/10.2151/jmsj.80.403
  13. Dickson, R. R., Osborn, T. J., Hurrell, J. W., Meincke, J., Blindheim, J., Adlandsvik, B., Vinje T., Alekseev G., and Maslowski, W. (2000). "The Arctic ocean response to the North Atlantic Oscillation." Journal of Climate, Vol. 13, No. 15, pp. 2671-2696. https://doi.org/10.1175/1520-0442(2000)013<2671:TAORTT>2.0.CO;2
  14. Feldstein, S. B. (2002). "The recent trend and variance increases of the annular mode." Journal of Climate, Vol. 15, No. 1, pp. 88-94. https://doi.org/10.1175/1520-0442(2002)015<0088:TRTAVI>2.0.CO;2
  15. Gong, D. Y., and Ho, C. H. (2003). "Arctic Oscillation signals in the East Asian summer monsoon." Journal of Geophysical Research: Atmospheres, Vol. 109, No. D2.
  16. Hassol, S. (2004). "Impacts of a warming Arctic-Arctic climate impact assessment." Cambridge University Press, N.Y., p. 139.
  17. Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H. J., and Kanae, S. (2013). "Global flood risk under climate change." Nature Climate Change, Vol. 3, No. 9, p. 816. https://doi.org/10.1038/nclimate1911
  18. Honda, M., Inoue, J., and Yamane, S. (2009). "Influence of low Arctic sea‐ice minima on anomalously cold Eurasian winters." Geophysical Research Letters, Vol. 36, No. 8. p. 6.
  19. Jaiser, R., Dethloff, K., Handorf, D., Rinke, A., and Cohen, J. (2012). "Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation." Tellus A: Dynamic Meteorology and Oceanography, Vol. 64, No. 1, p. 11.
  20. Jang, S. R., and Ha, K. J. (2008). "On the relationship between typhoon intensity and formation region: Effect of developing and decaying ENSO." Journal Korean Earth Science Society. Vol. 29, No. 1, pp. 29-44. https://doi.org/10.5467/JKESS.2008.29.1.029
  21. Jianhua, J., Junmei, L., Jie, C., and Juzhang, R. (2005). "Possible impacts of the Arctic Oscillation on the interdecadal variation of summer monsoon rainfall in East Asia." Advances in Atmospheric Sciences, Vol. 22, No. 1, pp. 39-48. https://doi.org/10.1007/BF02930868
  22. Kim, M. K. (2005). "The applicability of the statistical downscaling method for climate change scenario in Korea." Journal of the Korean Meteorological Society, Vol. 41, pp. 217-227.
  23. Lee, J. J., Lee, S. H., and Lee, H. S. (2012). "Establishment of river flow drainage plan to construct flood gate of bay and estuary." Journal of the Korean Society of Hazard Mitigation, pp. 263-263.
  24. Li, Y., Lu, R., and Dong, B. (2007). "The ENSO-Asian monsoon interaction in a coupled ocean-atmosphere GCM." Journal of Climate, Vol. 20, No. 20, pp. 5164-5177. https://doi.org/10.1175/JCLI4289.1
  25. Liu, J., Curry, J. A., Wang, H., Song, M., and Horton, R. M. (2012). "Impact of declining Arctic sea ice on winter snowfall." Proceedings of the National Academy of Sciences, Vol. 109, No. 11, pp. 4074-4079. https://doi.org/10.1073/pnas.1114910109
  26. Oh, J. H. (1996). "Study of the Asian summer monsoon for the Nino event of 1987 and the La Nina event of 1998 with the METRI/ YONU GCM." Asia-Pacific Journal of Atmospheric Sciences, Vol. 32, No. 1, pp. 111-129.
  27. Oh, T. S., Ahn, J. H., and Moon, Y. I., (2007) "A study on special quality of hourly precipitation of typhoon happened in Korea." Journal of Korea Water Resources Association, Vol. 40, No. 9, pp. 709-722. https://doi.org/10.3741/JKWRA.2007.40.9.709
  28. Overland, J. E., Adams, J. M., and Bond, N. A. (1999). "Decadal variability of the Aleutian low and its relation to high-latitude circulation." Journal of Climate, Vol. 12, No. 5, pp. 1542-1548. https://doi.org/10.1175/1520-0442(1999)012<1542:DVOTAL>2.0.CO;2
  29. Park, J. K., Kim, B. S., Jung, W. S., Kim, E. B., and Lee, D. G. (2006). "Change in statistical characteristics of typhoon affecting the Korean Peninsula." Atmosphere, Vol. 16, No. 1, pp. 1-17.
  30. Rigor, I. G., Wallace, J. M., and Colony, R. L. (2002). "Response of sea ice to the Arctic Oscillation." Journal of Climate, Vol. 15, No. 18, pp. 2648-2663. https://doi.org/10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2
  31. Rind, D. (1993). "Models see hard rain, drought if $CO_2$ doubles." Climate Alert Newsletter, Vol. 6, No. 2, pp. 120-125.
  32. Rowntree, P. (1993). "Climate change and extreme weather events." In Workshop on Socio-Economic Aspects of Changes in Extreme Weather Events, Amsterdam, Free University, pp. 3-20.
  33. Ryoo, S. B. (2001). "On the etymology and definition of Changma." Atmosphere, Vol. 11, No. 2, pp. 6-12.
  34. Seo, Y. K. (2001). The study for interaction of land surface and ENSO associated with interannual EAMR. Masters dissertation, Pusan National University, p. 70.
  35. Seol, D. I. (2013). "Relationship between typhoon and El Nino.La Nina events." Journal of Navigation and Port Research, Vol. 37, No. 6, pp. 611-616. https://doi.org/10.5394/KINPR.2013.37.6.611
  36. Thompson, D. W., and Wallace, J. M. (1998). "The Arctic Oscillation signature in the wintertime geopotential height and temperature fields." Geophysical Research Letters, Vol. 25. No. 9, pp. 1297-1300. https://doi.org/10.1029/98GL00950
  37. Thompson, D. W., Wallace, J. M., and Hegerl, G. C. (2000). "Annular modes in the extratropical circulation. Part II: Trends." Journal of Climate, Vol. 13, No. 5, pp. 1018-1036. https://doi.org/10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2
  38. Wang, B., and Chan, J. C. (2002). "How strong ENSO events affect tropical storm activity over the Western North Pacific." Journal of Climate, Vol. 15, No. 13, pp. 1643-1658. https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2
  39. Wu, B., and Wang, J. (2002). "Winter Arctic Oscillation, Siberian high and East Asian winter monsoon." Geophysical Research Letters, Vol. 29, No. 19. pp. 3-1-3-4.
  40. Yun, Y. N., Yu, C. S., Lee, J. S., and An, J. H. (1999). "On the change of flood and drought occurrence frequency due to global warming: 1. change of daily rainfall depth distribution due to different monthly/yearly rainfall depth." Journal of Korea Water Resources Association, Vol. 32, No. 6, pp. 617-625.