DOI QR코드

DOI QR Code

Research Trend of Biochip Sensors for Biomarkers Specific to Diagnostics of Lung Cancer Diseases

폐암 질환 진단에 활용 가능한 바이오마커 검출용 바이오칩 센서 연구 동향

  • Lee, Sang Hyuk (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University) ;
  • Goh, Eunseo (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University) ;
  • Lee, Hye Jin (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University)
  • 이상혁 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소) ;
  • 고은서 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소) ;
  • 이혜진 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소)
  • Received : 2018.11.06
  • Accepted : 2018.11.14
  • Published : 2018.12.10

Abstract

Lung cancer has the highest death rate of any cancer diseases in Koreans. However, patients often feel difficult to recognize their disease before facing the terminal diagnosis due to the absence of any significant symptoms. Furthermore, the clear detection of an early cancer stage is usually obscure with existing diagnostic methods. For this reason, extensive research efforts have been made on introducing a wide range of biochemical diagnostic tools for the molecular level analysis of biological fluids for lung cancer diagnoses. A chip-based biosensor, one type of the analytical devices, can be a great potential for the diagnosis, which can be used without any further expensive analytical equipments nor skilled analysts. In this mini review, we highlight recent research trends on searching biomarker candidates and bio-chip sensors for lung cancer diagnosis in addition to discussing their future aspects.

한국인의 암 사망률 1위를 차지하는 폐암은 발견되기 전까지 별다른 증상이 없어 환자는 병을 쉽게 인지하지 못하고, 기존의 진단법 또한 초기단계에는 적용이 어렵다. 해결책으로서, 분자수준에서의 체액분석을 폐암진단에 도입하는 방안이 제시되고 있다. 이를 위한 분석기기 가운데 대표적으로는 칩 기반 바이오센서가 있으며, 이 센서의 큰 장점으로는 고가의 분석장비나 숙련된 분석인력이 없이도 현장에서의 진단이 가능하다는 점이다. 본 미니총설에서는 폐암 진단에 활용가능한 혈액 내 바이오마커와 바이오칩 센서의 연구현황을 소개하고 이들의 발전가능성에 대해 논의하고자 한다.

Keywords

GOOOB2_2018_v29n6_645_f0001.png 이미지

Figure 1. Schematics showing some of representative biochip-based sensing platforms for biomarkers for lung cancer diagnostics.

GOOOB2_2018_v29n6_645_f0002.png 이미지

Figure 2. (A) Schematics showing electrochemical immunosensor for ENO1 using a PEG modified carbon electrode surface[12]. (B) Real-time SPR analysis of AAT and Tau 381 proteins using mixed antibodies immobilized on a single gold chip surface[48]. (A) and (B) are reprinted with permission from refs.[12,48], respectively (Copyright American Chemical Society 2010 and 2016, respectively).

Table 1. Some of Representative Genetic and Protein Biomarker Molecules Found in Blood for Lung Cancer Disease

GOOOB2_2018_v29n6_645_t0001.png 이미지

Table 2. Various Biochip Sensing Technologies Developed for a Wide Range of Lung Cancer Biomarkers

GOOOB2_2018_v29n6_645_t0002.png 이미지

References

  1. Y. J. Chae and J. S. Park, A comparison of symptoms, depression, and quality of life according to stages of survivorship in lung cancer patients, Asian Oncol. Nurs., 17, 79-86 (2017). https://doi.org/10.5388/aon.2017.17.2.79
  2. S. Hammerschmidt and H. Wirtz, Lung cancer: Current diagnosis and treatment, Dtsch. Arztebl. Int., 106, 809-818 (2009).
  3. B.-B. Park, Cytotoxic chemotherapy for non-small cell lung cancer, Hanyang Med. Rev., 34, 31-36 (2014). https://doi.org/10.7599/hmr.2014.34.1.31
  4. R. Li, F. Feng, Z. Z. Chen, Y. F. Bai, F. F. Guo, F. Y. Wu, and G. Zhou, Sensitive detection of carcinoembryonic antigen using surface plasmon resonance biosensor with gold nanoparticles signal amplification, Talanta, 140, 143-149 (2015). https://doi.org/10.1016/j.talanta.2015.03.041
  5. Z. Altintas and I. Tothill, Biomarkers and biosensors for the early diagnosis of lung cancer, Sens. Actuators B, 188, 988-998 (2013). https://doi.org/10.1016/j.snb.2013.07.078
  6. L. Y. Yeo, H. C. Chang, P. P. Chan, and J. R. Friend, Microfluidic devices for bioapplications, Small, 7, 12-48 (2011). https://doi.org/10.1002/smll.201000946
  7. F. S. Diba, S. Kim, and H. J. Lee, Electrochemical immunoassay for amyloid-beta 1-42 peptide in biological fluids interfacing with a gold nanoparticle modified carbon surface, Catal. Today, 295, 41-47 (2017). https://doi.org/10.1016/j.cattod.2017.02.039
  8. X. Miao, Z. Li, A. Zhu, Z. Feng, J. Tian, and X. Peng, Ultrasensitive electrochemical detection of protein tyrosine kinase- 7 by gold nanoparticles and methylene blue assisted signal amplification, Biosens. Bioelectron., 83, 39-44 (2016). https://doi.org/10.1016/j.bios.2016.04.032
  9. M. Amouzadeh Tabrizi, M. Shamsipur, and L. Farzin, A high sensitive electrochemical aptasensor for the determination of VEGF (165) in serum of lung cancer patient, Biosens. Bioelectron., 74, 764-769 (2015). https://doi.org/10.1016/j.bios.2015.07.032
  10. W. Lu, L. Tao, Y. Wang, X. Cao, J. Ge, J. Dong, and W. Qian, An electrochemical immunosensor for simultaneous multiplexed detection of two lung cancer biomarkers using au nanoparticles coated resin microspheres composed of l-tryptophan and caffeic acid, Ionics, 21, 1141-1152 (2014).
  11. J. H. Lim, J. Park, E. H. Oh, H. J. Ko, S. Hong, and T. H. Park, Nanovesicle-based bioelectronic nose for the diagnosis of lung cancer from human blood, Adv. Healthc. Mater., 3, 360-366 (2014). https://doi.org/10.1002/adhm.201300174
  12. J. A. Ho, H. C. Chang, N. Y. Shih, L. C. Wu, Y. F. Chang, C. C. Chen, and C. Chou, Diagnostic detection of human lung cancer- associated antigen using a gold nanoparticle-based electrochemical immunosensor, Anal. Chem., 82, 5944-5950 (2010). https://doi.org/10.1021/ac1001959
  13. Z. Altintas and I. E. Tothill, DNA-based biosensor platforms for the detection of TP53 mutation, Sens. Actuators B, 169, 188-194 (2012). https://doi.org/10.1016/j.snb.2012.04.064
  14. F. Liu, H. Zhang, Z. Wu, H. Dong, L. Zhou, D. Yang, Y. Ge, C. Jia, H. Liu, Q. Jin, J. Zhao, Q. Zhang, and H. Mao, Highly sensitive and selective lateral flow immunoassay based on magnetic nanoparticles for quantitative detection of carcinoembryonic antigen, Talanta, 161, 205-210 (2016). https://doi.org/10.1016/j.talanta.2016.08.048
  15. B. Hayes, C. Murphy, A. Crawley, and R. O'Kennedy, Developments in point-of-care diagnostic technology for cancer detection, Diagnostics (Basel), 8, 1-18 (2018).
  16. G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, Long period fiber grating nano-optrode for cancer biomarker detection, Biosens. Bioelectron., 80, 590-600 (2016). https://doi.org/10.1016/j.bios.2016.02.021
  17. A. P. Abel, M. G. Weller, G. L. Duveneck, M. Ehrat, and H. M. Widmer, Fiber-optic evanescent wave biosensor for the detection of oligonucleotides, Anal. Chem., 68, 2905-2912 (1996). https://doi.org/10.1021/ac960071+
  18. V. Donzella and F. Crea, Optical biosensors to analyze novel biomarkers in oncology, J. Biophotonics, 4, 442-452 (2011). https://doi.org/10.1002/jbio.201000123
  19. S. K. Arya and S. Bhansali, Lung cancer and its early detection using biomarker-based biosensors, Chem. Rev., 111, 6783-6809 (2011). https://doi.org/10.1021/cr100420s
  20. S. H. Yang, Biomarkers for lung cancer, J. Lung Cancer, 8, 67 (2009). https://doi.org/10.6058/jlc.2009.8.2.67
  21. D. Tang, Y. Shen, M. Wang, R. Yang, Z. Wang, A. Sui, W. Jiao, and Y. Wang, Identification of plasma microRNAs as novel noninvasive biomarkers for early detection of lung cancer, Eur. J. Cancer Prev., 22, 540-548 (2013).
  22. A. Koulman, G. A. Lane, S. J. Harrison, and D. A. Volmer, From differentiating metabolites to biomarkers, Anal. Bioanal. Chem., 394, 663-670 (2009). https://doi.org/10.1007/s00216-009-2690-3
  23. Y. Shi, X. Liu, J. Lou, X. Han, L. Zhang, Q. Wang, B. Li, M. Dong, and Y. Zhang, Plasma levels of heat shock protein 90 alpha associated with lung cancer development and treatment responses, Clin. Cancer Res., 20, 6016-6022 (2014). https://doi.org/10.1158/1078-0432.CCR-14-0174
  24. F. Barlési, C. Gimenez, J.-P. Torre, C. Doddoli, J. Mancini, L. Greillier, F. Roux, and J.-P. Kleisbauer, Prognostic value of combination of Cyfra 21-1, CEA and NSE in patients with advanced non-small cell lung cancer, Respir. Med., 98, 357-362 (2004). https://doi.org/10.1016/j.rmed.2003.11.003
  25. F. Alatas, O. Alatas, M. Metintas, O. Colak, E. Harmanci, and S. Demir, Diagnostic value of CEA, CA 15-3, CA 19-9, CYFRA 21-1, NSE and TSA assay in pleural effusions, Lung Cancer, 31, 9-16 (2001). https://doi.org/10.1016/S0169-5002(00)00153-7
  26. J. Zhou, L. Nong, M. Wloch, A. Cantor, J. L. Mulshine, and M. S. Tockman, Expression of early lung cancer detection marker: hnRNP-A2/B1 and its relation to microsatellite alteration in non-small cell lung cancer, Lung Cancer, 34, 341-350 (2001). https://doi.org/10.1016/S0169-5002(01)00254-9
  27. Y. Liang, T. Ma, A. Thakur, H. Yu, L. Gao, P. Shi, X. Li, H. Ren, L. Jia, S. Zhang, Z. Li, and M. Chen, Differentially expressed glycosylated patterns of alpha-1-antitrypsin as serum biomarkers for the diagnosis of lung cancer, Glycobiol., 25, 331-340 (2015). https://doi.org/10.1093/glycob/cwu115
  28. C. Jiao, L. Cui, A. Ma, N. Li, and H. Si, Elevated serum levels of retinol-binding protein 4 are associated with breast cancer risk: A case-control study, PLoS One, 11, 1-12 (2016).
  29. H. R. Jang, A. W. Wark, S. H. Baek, B. H. Chung, and H. J. Lee, Ultrasensitive and ultrawide range detection of a cardiac biomarker on a surface plasmon resonance platform, Anal. Chem., 86, 814-819 (2014). https://doi.org/10.1021/ac4033565
  30. F. Grossi, M. Loprevite, M. Chiaramondia, P. Ceppa, C. Pera, G. B. Ratto, J. Serrano, G. B. Ferrara, R. Costa, L. Boni, and A. Ardizzoni, Prognostic significance of K-ras, p53, bcl-2, PCNA, CD34 in radically resected non-small cell lung cancers, Eur. J. Cancer, 39, 1242-1250 (2003). https://doi.org/10.1016/S0959-8049(03)00232-6
  31. E. Carcereny, J. L. Ramirez, M. Sanchez-Ronco, D. Isla, M. Cobo, T. Moran, I. de Aguirre, T. Okamoto, J. Wei, M. Provencio, G. Lopez-Vivanco, C. Camps, M. Domine, V. Alberola, J. M. Sanchez, B. Massuti, P. Mendez, M. Taron, and R. Rosell, Blood-based CHRNA3 single nucleotide polymorphism and outcome in advanced non-small-cell lung cancer patients, Lung Cancer, 68, 491-497 (2010). https://doi.org/10.1016/j.lungcan.2009.08.004
  32. H. D. Hosgood, 3rd, R. Cawthon, X. He, S. Chanock, and Q. Lan, Genetic variation in telomere maintenance genes, telomere length, and lung cancer susceptibility, Lung Cancer, 66, 157-161 (2009). https://doi.org/10.1016/j.lungcan.2009.02.005
  33. J. S. Jang, Y. Y. Choi, W. K. Lee, J. E. Choi, S. I. Cha, Y. J. Kim, C. H. Kim, S. Kam, T. H. Jung, and J. Y. Park, Telomere length and the risk of lung cancer, Cancer Sci., 99, 1385-1389 (2008). https://doi.org/10.1111/j.1349-7006.2008.00831.x
  34. M. Spinola, V. P. Leoni, A. Galvan, E. Korsching, B. Conti, U. Pastorino, F. Ravagnani, A. Columbano, V. Skaug, A. Haugen, and T. A. Dragani, Genome-wide single nucleotide polymorphism analysis of lung cancer risk detects the KLF6 gene, Cancer Lett., 251, 311-316 (2007). https://doi.org/10.1016/j.canlet.2006.11.029
  35. P. Gresner, J. Gromadzinska, E. Jablonska, J. Kaczmarski, and W. Wasowicz, Expression of selenoprotein-coding genes SEPP1, SEP15 and hGPX1 in non-small cell lung cancer, Lung Cancer, 65, 34-40 (2009). https://doi.org/10.1016/j.lungcan.2008.10.023
  36. D. G. Weber, G. Johnen, S. Casjens, O. Bryk, B. Pesch, K. H. Jockel, J. Kollmeier, and T. Bruning, Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell lung cancer, BMC Res. Notes, 6, 1-9 (2013). https://doi.org/10.1186/1756-0500-6-1
  37. D. Madhavan, K. Cuk, B. Burwinkel, and R. Yang, Cancer diagnosis and prognosis decoded by blood-based circulating microRNA signatures, Front. Genet., 4, 1-13 (2013).
  38. C. G. Kim, H. S. Shim, M. H. Hong, Y. J. Cha, S. J. Heo, H. S. Park, J. H. Kim, J. G. Lee, C. Y. Lee, B. C. Cho, and H. R. Kim, Detection of activating and acquired resistant mutation in plasma from EGFR-mutated NSCLC patients by peptide nucleic acid (PNA) clamping-assisted fluorescence melting curve analysis, Oncotarget, 8, 65111-65122 (2017).
  39. M. H. Kwon, G. E. Lee, S. J. Kwon, E. Choi, M. J. Na, H. M. Cho, Y. J. Kim, H. J. Sul, Y. J. Cho, and J. W. Son, Identification of DNA methylation markers for NSCLC using Hpall-Mspl methylation microarray, Tuberc. Respir. Dis., 65, 495-503 (2008). https://doi.org/10.4046/trd.2008.65.6.495
  40. S. Rodriguez-Enriquez, S. C. Pacheco-Velazquez, J. C. Gallardo-Perez, A. Marin-Hernandez, J. L. Aguilar-Ponce, E. Ruiz-Garcia, L. M. Ruizgodoy-Rivera, A. Meneses-Garcia, and R. Moreno-Sanchez, Multi-biomarker pattern for tumor identification and prognosis, J. Cell Biochem., 112, 2703-2715 (2011). https://doi.org/10.1002/jcb.23224
  41. W. Zhou, P. J. Huang, J. Ding, and J. Liu, Aptamer-based biosensors for biomedical diagnostics, Analyst, 139, 2627-2640 (2014). https://doi.org/10.1039/c4an00132j
  42. M. Perfezou, A. Turner, and A. Merkoci, Cancer detection using nanoparticle-based sensors, Chem. Soc. Rev., 41, 2606-2622 (2012). https://doi.org/10.1039/C1CS15134G
  43. H. V. Tran, B. Piro, S. Reisberg, L. Huy Nguyen, T. Dung Nguyen, H. T. Duc, and M. C. Pham, An electrochemical ELISA-like immunosensor for miRNAs detection based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes, Biosens. Bioelectron., 62, 25-30 (2014). https://doi.org/10.1016/j.bios.2014.06.014
  44. H. Wang, X. Wang, J. Wang, W. Fu, and C. Yao, A SPR biosensor based on signal amplification using antibody-QD conjugates for quantitative determination of multiple tumor markers, Sci. Rep., 6, 1-9 (2016). https://doi.org/10.1038/s41598-016-0001-8
  45. F. S. Diba, S. Kim, and H. J. Lee, Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips, Biosens. Bioelectron., 72, 355-361 (2015). https://doi.org/10.1016/j.bios.2015.05.020
  46. S. Kim and H. J. Lee, Direct detection of alpha-1 antitrypsin in serum samples using surface plasmon resonance with a new aptamer-antibody sandwich assay, Anal. Chem., 87, 7235-7240 (2015). https://doi.org/10.1021/acs.analchem.5b01192
  47. S. Kim, A. W. Wark, and H. J. Lee, Femtomolar detection of tau proteins in undiluted plasma using surface plasmon resonance, Anal. Chem., 88, 7793-7799 (2016). https://doi.org/10.1021/acs.analchem.6b01825
  48. S. Kim, J. W. Park, A. W. Wark, S. H. Jhung, and H. J. Lee, Tandem femto- and nanomolar analysis of two protein biomarkers in plasma on a single mixed antibody monolayer surface using surface plasmon resonance, Anal. Chem., 89, 12562-12568 (2017). https://doi.org/10.1021/acs.analchem.7b03837
  49. S. Kim and H. J. Lee, Gold nanostar enhanced surface plasmon resonance detection of an antibiotic at attomolar concentrations via an aptamer-antibody sandwich assay, Anal. Chem., 89, 6624-6630 (2017). https://doi.org/10.1021/acs.analchem.7b00779
  50. M. J. Kwon, J. Lee, A. W. Wark, and H. J. Lee, Nanoparticle-enhanced surface plasmon resonance detection of proteins at attomolar concentrations: Comparing different nanoparticle shapes and sizes, Anal. Chem., 84, 1702-1707 (2012). https://doi.org/10.1021/ac202957h
  51. T. Singh, S. D. Sharma, and S. K. Katiyar, Grape proanthocyanidins induce apoptosis by loss of mitochondrial membrane potential of human non-small cell lung cancer cells in vitro and in vivo, PLoS One, 6, 1-13 (2011).
  52. Z. Chen, R. Liang, X. Guo, J. Liang, Q. Deng, M. Li, T. An, T. Liu, and Y. Wu, Simultaneous quantitation of cytokeratin-19 fragment and carcinoembryonic antigen in human serum via quantum dot-doped nanoparticles, Biosens. Bioelectron., 91, 60-65 (2017). https://doi.org/10.1016/j.bios.2016.12.036
  53. W. Qin, K. Wang, K. Xiao, Y. Hou, W. Lu, H. Xu, Y. Wo, S. Feng, and D. Cui, Carcinoembryonic antigen detection with "handing"-controlled fluorescence spectroscopy using a color matrix for point-of-care applications, Biosens. Bioelectron., 90, 508-515 (2017). https://doi.org/10.1016/j.bios.2016.10.052
  54. Z. Altintas, Y. Uludag, Y. Gurbuz, and I. E. Tothill, Surface plasmon resonance based immunosensor for the detection of the cancer biomarker carcinoembryonic antigen, Talanta, 86, 377-383 (2011). https://doi.org/10.1016/j.talanta.2011.09.031
  55. P. Wu, Y. Gao, Y. Lu, H. Zhang, and C. Cai, High specific detection and near-infrared photothermal therapy of lung cancer cells with high SERS active aptamer-silver-gold shell-core nanostructures, Analyst, 138, 6501-6510 (2013). https://doi.org/10.1039/c3an01375h
  56. J. Homola, S. S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: Review, Sens. Actuators B, 54, 3-15 (1999). https://doi.org/10.1016/S0925-4005(98)00321-9
  57. S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications, Chem. Soc. Rev., 43, 3426-3452 (2014). https://doi.org/10.1039/c3cs60479a
  58. Y. Li, H. J. Lee, and R. M. Corn, Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging, Anal. Chem., 79, 1082-1088 (2007). https://doi.org/10.1021/ac061849m

Cited by

  1. 암 바이오마커 검출용 비색법 기반 측면 흐름 면역 크로마토그래피 분석법(LFIA) 스트립의 최신 연구 동향 vol.31, pp.6, 2020, https://doi.org/10.14478/ace.2020.1093