Figure 1. Schematics showing some of representative biochip-based sensing platforms for biomarkers for lung cancer diagnostics.
Figure 2. (A) Schematics showing electrochemical immunosensor for ENO1 using a PEG modified carbon electrode surface[12]. (B) Real-time SPR analysis of AAT and Tau 381 proteins using mixed antibodies immobilized on a single gold chip surface[48]. (A) and (B) are reprinted with permission from refs.[12,48], respectively (Copyright American Chemical Society 2010 and 2016, respectively).
Table 1. Some of Representative Genetic and Protein Biomarker Molecules Found in Blood for Lung Cancer Disease
Table 2. Various Biochip Sensing Technologies Developed for a Wide Range of Lung Cancer Biomarkers
References
- Y. J. Chae and J. S. Park, A comparison of symptoms, depression, and quality of life according to stages of survivorship in lung cancer patients, Asian Oncol. Nurs., 17, 79-86 (2017). https://doi.org/10.5388/aon.2017.17.2.79
- S. Hammerschmidt and H. Wirtz, Lung cancer: Current diagnosis and treatment, Dtsch. Arztebl. Int., 106, 809-818 (2009).
- B.-B. Park, Cytotoxic chemotherapy for non-small cell lung cancer, Hanyang Med. Rev., 34, 31-36 (2014). https://doi.org/10.7599/hmr.2014.34.1.31
- R. Li, F. Feng, Z. Z. Chen, Y. F. Bai, F. F. Guo, F. Y. Wu, and G. Zhou, Sensitive detection of carcinoembryonic antigen using surface plasmon resonance biosensor with gold nanoparticles signal amplification, Talanta, 140, 143-149 (2015). https://doi.org/10.1016/j.talanta.2015.03.041
- Z. Altintas and I. Tothill, Biomarkers and biosensors for the early diagnosis of lung cancer, Sens. Actuators B, 188, 988-998 (2013). https://doi.org/10.1016/j.snb.2013.07.078
- L. Y. Yeo, H. C. Chang, P. P. Chan, and J. R. Friend, Microfluidic devices for bioapplications, Small, 7, 12-48 (2011). https://doi.org/10.1002/smll.201000946
- F. S. Diba, S. Kim, and H. J. Lee, Electrochemical immunoassay for amyloid-beta 1-42 peptide in biological fluids interfacing with a gold nanoparticle modified carbon surface, Catal. Today, 295, 41-47 (2017). https://doi.org/10.1016/j.cattod.2017.02.039
- X. Miao, Z. Li, A. Zhu, Z. Feng, J. Tian, and X. Peng, Ultrasensitive electrochemical detection of protein tyrosine kinase- 7 by gold nanoparticles and methylene blue assisted signal amplification, Biosens. Bioelectron., 83, 39-44 (2016). https://doi.org/10.1016/j.bios.2016.04.032
- M. Amouzadeh Tabrizi, M. Shamsipur, and L. Farzin, A high sensitive electrochemical aptasensor for the determination of VEGF (165) in serum of lung cancer patient, Biosens. Bioelectron., 74, 764-769 (2015). https://doi.org/10.1016/j.bios.2015.07.032
- W. Lu, L. Tao, Y. Wang, X. Cao, J. Ge, J. Dong, and W. Qian, An electrochemical immunosensor for simultaneous multiplexed detection of two lung cancer biomarkers using au nanoparticles coated resin microspheres composed of l-tryptophan and caffeic acid, Ionics, 21, 1141-1152 (2014).
- J. H. Lim, J. Park, E. H. Oh, H. J. Ko, S. Hong, and T. H. Park, Nanovesicle-based bioelectronic nose for the diagnosis of lung cancer from human blood, Adv. Healthc. Mater., 3, 360-366 (2014). https://doi.org/10.1002/adhm.201300174
- J. A. Ho, H. C. Chang, N. Y. Shih, L. C. Wu, Y. F. Chang, C. C. Chen, and C. Chou, Diagnostic detection of human lung cancer- associated antigen using a gold nanoparticle-based electrochemical immunosensor, Anal. Chem., 82, 5944-5950 (2010). https://doi.org/10.1021/ac1001959
- Z. Altintas and I. E. Tothill, DNA-based biosensor platforms for the detection of TP53 mutation, Sens. Actuators B, 169, 188-194 (2012). https://doi.org/10.1016/j.snb.2012.04.064
- F. Liu, H. Zhang, Z. Wu, H. Dong, L. Zhou, D. Yang, Y. Ge, C. Jia, H. Liu, Q. Jin, J. Zhao, Q. Zhang, and H. Mao, Highly sensitive and selective lateral flow immunoassay based on magnetic nanoparticles for quantitative detection of carcinoembryonic antigen, Talanta, 161, 205-210 (2016). https://doi.org/10.1016/j.talanta.2016.08.048
- B. Hayes, C. Murphy, A. Crawley, and R. O'Kennedy, Developments in point-of-care diagnostic technology for cancer detection, Diagnostics (Basel), 8, 1-18 (2018).
- G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, Long period fiber grating nano-optrode for cancer biomarker detection, Biosens. Bioelectron., 80, 590-600 (2016). https://doi.org/10.1016/j.bios.2016.02.021
- A. P. Abel, M. G. Weller, G. L. Duveneck, M. Ehrat, and H. M. Widmer, Fiber-optic evanescent wave biosensor for the detection of oligonucleotides, Anal. Chem., 68, 2905-2912 (1996). https://doi.org/10.1021/ac960071+
- V. Donzella and F. Crea, Optical biosensors to analyze novel biomarkers in oncology, J. Biophotonics, 4, 442-452 (2011). https://doi.org/10.1002/jbio.201000123
- S. K. Arya and S. Bhansali, Lung cancer and its early detection using biomarker-based biosensors, Chem. Rev., 111, 6783-6809 (2011). https://doi.org/10.1021/cr100420s
- S. H. Yang, Biomarkers for lung cancer, J. Lung Cancer, 8, 67 (2009). https://doi.org/10.6058/jlc.2009.8.2.67
- D. Tang, Y. Shen, M. Wang, R. Yang, Z. Wang, A. Sui, W. Jiao, and Y. Wang, Identification of plasma microRNAs as novel noninvasive biomarkers for early detection of lung cancer, Eur. J. Cancer Prev., 22, 540-548 (2013).
- A. Koulman, G. A. Lane, S. J. Harrison, and D. A. Volmer, From differentiating metabolites to biomarkers, Anal. Bioanal. Chem., 394, 663-670 (2009). https://doi.org/10.1007/s00216-009-2690-3
- Y. Shi, X. Liu, J. Lou, X. Han, L. Zhang, Q. Wang, B. Li, M. Dong, and Y. Zhang, Plasma levels of heat shock protein 90 alpha associated with lung cancer development and treatment responses, Clin. Cancer Res., 20, 6016-6022 (2014). https://doi.org/10.1158/1078-0432.CCR-14-0174
- F. Barlési, C. Gimenez, J.-P. Torre, C. Doddoli, J. Mancini, L. Greillier, F. Roux, and J.-P. Kleisbauer, Prognostic value of combination of Cyfra 21-1, CEA and NSE in patients with advanced non-small cell lung cancer, Respir. Med., 98, 357-362 (2004). https://doi.org/10.1016/j.rmed.2003.11.003
- F. Alatas, O. Alatas, M. Metintas, O. Colak, E. Harmanci, and S. Demir, Diagnostic value of CEA, CA 15-3, CA 19-9, CYFRA 21-1, NSE and TSA assay in pleural effusions, Lung Cancer, 31, 9-16 (2001). https://doi.org/10.1016/S0169-5002(00)00153-7
- J. Zhou, L. Nong, M. Wloch, A. Cantor, J. L. Mulshine, and M. S. Tockman, Expression of early lung cancer detection marker: hnRNP-A2/B1 and its relation to microsatellite alteration in non-small cell lung cancer, Lung Cancer, 34, 341-350 (2001). https://doi.org/10.1016/S0169-5002(01)00254-9
- Y. Liang, T. Ma, A. Thakur, H. Yu, L. Gao, P. Shi, X. Li, H. Ren, L. Jia, S. Zhang, Z. Li, and M. Chen, Differentially expressed glycosylated patterns of alpha-1-antitrypsin as serum biomarkers for the diagnosis of lung cancer, Glycobiol., 25, 331-340 (2015). https://doi.org/10.1093/glycob/cwu115
- C. Jiao, L. Cui, A. Ma, N. Li, and H. Si, Elevated serum levels of retinol-binding protein 4 are associated with breast cancer risk: A case-control study, PLoS One, 11, 1-12 (2016).
- H. R. Jang, A. W. Wark, S. H. Baek, B. H. Chung, and H. J. Lee, Ultrasensitive and ultrawide range detection of a cardiac biomarker on a surface plasmon resonance platform, Anal. Chem., 86, 814-819 (2014). https://doi.org/10.1021/ac4033565
- F. Grossi, M. Loprevite, M. Chiaramondia, P. Ceppa, C. Pera, G. B. Ratto, J. Serrano, G. B. Ferrara, R. Costa, L. Boni, and A. Ardizzoni, Prognostic significance of K-ras, p53, bcl-2, PCNA, CD34 in radically resected non-small cell lung cancers, Eur. J. Cancer, 39, 1242-1250 (2003). https://doi.org/10.1016/S0959-8049(03)00232-6
- E. Carcereny, J. L. Ramirez, M. Sanchez-Ronco, D. Isla, M. Cobo, T. Moran, I. de Aguirre, T. Okamoto, J. Wei, M. Provencio, G. Lopez-Vivanco, C. Camps, M. Domine, V. Alberola, J. M. Sanchez, B. Massuti, P. Mendez, M. Taron, and R. Rosell, Blood-based CHRNA3 single nucleotide polymorphism and outcome in advanced non-small-cell lung cancer patients, Lung Cancer, 68, 491-497 (2010). https://doi.org/10.1016/j.lungcan.2009.08.004
- H. D. Hosgood, 3rd, R. Cawthon, X. He, S. Chanock, and Q. Lan, Genetic variation in telomere maintenance genes, telomere length, and lung cancer susceptibility, Lung Cancer, 66, 157-161 (2009). https://doi.org/10.1016/j.lungcan.2009.02.005
- J. S. Jang, Y. Y. Choi, W. K. Lee, J. E. Choi, S. I. Cha, Y. J. Kim, C. H. Kim, S. Kam, T. H. Jung, and J. Y. Park, Telomere length and the risk of lung cancer, Cancer Sci., 99, 1385-1389 (2008). https://doi.org/10.1111/j.1349-7006.2008.00831.x
- M. Spinola, V. P. Leoni, A. Galvan, E. Korsching, B. Conti, U. Pastorino, F. Ravagnani, A. Columbano, V. Skaug, A. Haugen, and T. A. Dragani, Genome-wide single nucleotide polymorphism analysis of lung cancer risk detects the KLF6 gene, Cancer Lett., 251, 311-316 (2007). https://doi.org/10.1016/j.canlet.2006.11.029
- P. Gresner, J. Gromadzinska, E. Jablonska, J. Kaczmarski, and W. Wasowicz, Expression of selenoprotein-coding genes SEPP1, SEP15 and hGPX1 in non-small cell lung cancer, Lung Cancer, 65, 34-40 (2009). https://doi.org/10.1016/j.lungcan.2008.10.023
- D. G. Weber, G. Johnen, S. Casjens, O. Bryk, B. Pesch, K. H. Jockel, J. Kollmeier, and T. Bruning, Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell lung cancer, BMC Res. Notes, 6, 1-9 (2013). https://doi.org/10.1186/1756-0500-6-1
- D. Madhavan, K. Cuk, B. Burwinkel, and R. Yang, Cancer diagnosis and prognosis decoded by blood-based circulating microRNA signatures, Front. Genet., 4, 1-13 (2013).
- C. G. Kim, H. S. Shim, M. H. Hong, Y. J. Cha, S. J. Heo, H. S. Park, J. H. Kim, J. G. Lee, C. Y. Lee, B. C. Cho, and H. R. Kim, Detection of activating and acquired resistant mutation in plasma from EGFR-mutated NSCLC patients by peptide nucleic acid (PNA) clamping-assisted fluorescence melting curve analysis, Oncotarget, 8, 65111-65122 (2017).
- M. H. Kwon, G. E. Lee, S. J. Kwon, E. Choi, M. J. Na, H. M. Cho, Y. J. Kim, H. J. Sul, Y. J. Cho, and J. W. Son, Identification of DNA methylation markers for NSCLC using Hpall-Mspl methylation microarray, Tuberc. Respir. Dis., 65, 495-503 (2008). https://doi.org/10.4046/trd.2008.65.6.495
- S. Rodriguez-Enriquez, S. C. Pacheco-Velazquez, J. C. Gallardo-Perez, A. Marin-Hernandez, J. L. Aguilar-Ponce, E. Ruiz-Garcia, L. M. Ruizgodoy-Rivera, A. Meneses-Garcia, and R. Moreno-Sanchez, Multi-biomarker pattern for tumor identification and prognosis, J. Cell Biochem., 112, 2703-2715 (2011). https://doi.org/10.1002/jcb.23224
- W. Zhou, P. J. Huang, J. Ding, and J. Liu, Aptamer-based biosensors for biomedical diagnostics, Analyst, 139, 2627-2640 (2014). https://doi.org/10.1039/c4an00132j
- M. Perfezou, A. Turner, and A. Merkoci, Cancer detection using nanoparticle-based sensors, Chem. Soc. Rev., 41, 2606-2622 (2012). https://doi.org/10.1039/C1CS15134G
- H. V. Tran, B. Piro, S. Reisberg, L. Huy Nguyen, T. Dung Nguyen, H. T. Duc, and M. C. Pham, An electrochemical ELISA-like immunosensor for miRNAs detection based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes, Biosens. Bioelectron., 62, 25-30 (2014). https://doi.org/10.1016/j.bios.2014.06.014
- H. Wang, X. Wang, J. Wang, W. Fu, and C. Yao, A SPR biosensor based on signal amplification using antibody-QD conjugates for quantitative determination of multiple tumor markers, Sci. Rep., 6, 1-9 (2016). https://doi.org/10.1038/s41598-016-0001-8
- F. S. Diba, S. Kim, and H. J. Lee, Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips, Biosens. Bioelectron., 72, 355-361 (2015). https://doi.org/10.1016/j.bios.2015.05.020
- S. Kim and H. J. Lee, Direct detection of alpha-1 antitrypsin in serum samples using surface plasmon resonance with a new aptamer-antibody sandwich assay, Anal. Chem., 87, 7235-7240 (2015). https://doi.org/10.1021/acs.analchem.5b01192
- S. Kim, A. W. Wark, and H. J. Lee, Femtomolar detection of tau proteins in undiluted plasma using surface plasmon resonance, Anal. Chem., 88, 7793-7799 (2016). https://doi.org/10.1021/acs.analchem.6b01825
- S. Kim, J. W. Park, A. W. Wark, S. H. Jhung, and H. J. Lee, Tandem femto- and nanomolar analysis of two protein biomarkers in plasma on a single mixed antibody monolayer surface using surface plasmon resonance, Anal. Chem., 89, 12562-12568 (2017). https://doi.org/10.1021/acs.analchem.7b03837
- S. Kim and H. J. Lee, Gold nanostar enhanced surface plasmon resonance detection of an antibiotic at attomolar concentrations via an aptamer-antibody sandwich assay, Anal. Chem., 89, 6624-6630 (2017). https://doi.org/10.1021/acs.analchem.7b00779
- M. J. Kwon, J. Lee, A. W. Wark, and H. J. Lee, Nanoparticle-enhanced surface plasmon resonance detection of proteins at attomolar concentrations: Comparing different nanoparticle shapes and sizes, Anal. Chem., 84, 1702-1707 (2012). https://doi.org/10.1021/ac202957h
- T. Singh, S. D. Sharma, and S. K. Katiyar, Grape proanthocyanidins induce apoptosis by loss of mitochondrial membrane potential of human non-small cell lung cancer cells in vitro and in vivo, PLoS One, 6, 1-13 (2011).
- Z. Chen, R. Liang, X. Guo, J. Liang, Q. Deng, M. Li, T. An, T. Liu, and Y. Wu, Simultaneous quantitation of cytokeratin-19 fragment and carcinoembryonic antigen in human serum via quantum dot-doped nanoparticles, Biosens. Bioelectron., 91, 60-65 (2017). https://doi.org/10.1016/j.bios.2016.12.036
- W. Qin, K. Wang, K. Xiao, Y. Hou, W. Lu, H. Xu, Y. Wo, S. Feng, and D. Cui, Carcinoembryonic antigen detection with "handing"-controlled fluorescence spectroscopy using a color matrix for point-of-care applications, Biosens. Bioelectron., 90, 508-515 (2017). https://doi.org/10.1016/j.bios.2016.10.052
- Z. Altintas, Y. Uludag, Y. Gurbuz, and I. E. Tothill, Surface plasmon resonance based immunosensor for the detection of the cancer biomarker carcinoembryonic antigen, Talanta, 86, 377-383 (2011). https://doi.org/10.1016/j.talanta.2011.09.031
- P. Wu, Y. Gao, Y. Lu, H. Zhang, and C. Cai, High specific detection and near-infrared photothermal therapy of lung cancer cells with high SERS active aptamer-silver-gold shell-core nanostructures, Analyst, 138, 6501-6510 (2013). https://doi.org/10.1039/c3an01375h
- J. Homola, S. S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: Review, Sens. Actuators B, 54, 3-15 (1999). https://doi.org/10.1016/S0925-4005(98)00321-9
- S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications, Chem. Soc. Rev., 43, 3426-3452 (2014). https://doi.org/10.1039/c3cs60479a
- Y. Li, H. J. Lee, and R. M. Corn, Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging, Anal. Chem., 79, 1082-1088 (2007). https://doi.org/10.1021/ac061849m
Cited by
- 암 바이오마커 검출용 비색법 기반 측면 흐름 면역 크로마토그래피 분석법(LFIA) 스트립의 최신 연구 동향 vol.31, pp.6, 2020, https://doi.org/10.14478/ace.2020.1093