DOI QR코드

DOI QR Code

A Study on the Braking Force Distribution of ADAS Vehicle

첨단 운전자 보조시스템 장착 차량의 브레이크 제동력 분배에 관한 연구

  • Yoon, Pil-Hwan (Department of Mechanical Engineering, Keimyung University) ;
  • Lee, Seon Bong (Division of Mechanical and Automotive Engineering, Keimyung University)
  • 윤필환 (계명대학교 기계공학과) ;
  • 이선봉 (계명대학교 기계자동차공학부)
  • Received : 2018.09.04
  • Accepted : 2018.11.02
  • Published : 2018.11.30

Abstract

Many countries have provided support for research and development and implemented policies for Advanced Driver Assistance Systems (ADAS) for enhancing the safety of vehicles. With such efforts, the toll of casualties due to traffic accidents has decreased gradually. Korea has exhibited the lowest toll of casualties due to traffic accidents and is ranked 32nd in mortality among the 35 OECD members. Traffic accidents typically fall into three categories depending on the cause of the accident: vehicle to vehicle (V2V), vehicle to pedestrian (V2P), and vehicle independent. Most accidents are caused by drivers' mistakes in recognition, judgment, or operation. ADAS has been proposed to prevent and reduce accidents from such human errors. Moreover, the global automobile industry has recently been developing various safety measures, but on-road tests are still limited and contain various risks. Therefore, this study investigated the international standards for evaluation tests with regard to the assessment techniques in braking capability to cope with the limitations of on-road tests. A theoretical formula for braking force and a control algorithm are proposed, which were validated by comparing the results with those from an on-road test. These results verified the braking force depending on the functions of ADAS. The risks of on-road tests can be reduced because the proposed theoretical formula allows a prediction of the tendencies.

세계 각국 정부는 자동차 안전성 향상을 위한 첨단 운전자 보조시스템(ADAS, Advanced Driver Assistance System)에 대해 연구 지원 및 정책을 시행하고 있다. 이러한 노력으로 교통사고 사상자수는 지속적으로 감소하고 있다. 그러나 국내 교통사고 사상자 수는 OECD 35개국 가운데 최하위이며, 사망률은 31위를 기록하고 있다. 교통사고는 사고의 원인에 따라 차대차(V2V, Vehicle to Vehicle), 차대사람(V2P, Vehicle to Pedestrian), 차량단독과 같은 세 가지 유형으로 분류된다. 사고원인은 운전자의 인지, 판단, 조작 등의 실수로 인하여 발생한다. 이러한 이유로 사고 감소 및 예방을 위해 제안된 것이 ADAS 이다. 그리고 현재 자동차 산업계에서는 각종 안전장치를 개발하고 있으나, 성능검사를 위한 실차시험은 제한적이며 위험성을 동반하고 있다. 따라서 본 연구에서는, 제한적인 실차시험의 극복을 위해 브레이크 제동력 평가 기술에 관한 시험평가 방법의 국제표준을 검토하고, 제동력에 관한 이론식과 제어 알고리즘을 제안한 뒤 이를 실차시험으로 비교하여 타당성을 검증하였다. 이 결과는 ADAS의 기능에 따른 제동력을 확인 할 수 있으며, 개발단계에서 제안한 이론식으로 경향성 예측이 가능해져 실차시험의 위험성을 감소시킬 수 있을 것으로 판단된다.

Keywords

SHGSCZ_2018_v19n11_550_f0001.png 이미지

Fig. 1. Tire residual distance

SHGSCZ_2018_v19n11_550_f0002.png 이미지

Fig. 2. ACC control algorithm

SHGSCZ_2018_v19n11_550_f0003.png 이미지

Fig. 3. LKAS control algorithm

SHGSCZ_2018_v19n11_550_f0004.png 이미지

Fig. 4. AEB control algorithm

SHGSCZ_2018_v19n11_550_f0005.png 이미지

Fig. 5. ADAS control algorithm

SHGSCZ_2018_v19n11_550_f0006.png 이미지

Fig. 6. Test vehicle(a) EQ900 (b) K5

SHGSCZ_2018_v19n11_550_f0007.png 이미지

Fig. 7. Test procedure in a curve

SHGSCZ_2018_v19n11_550_f0008.png 이미지

Fig. 8. Evaluation road (a) Multipurpose test track (b) High speed main circuit (c) Cooperative vehicle-infrastructure test intersections

SHGSCZ_2018_v19n11_550_f0009.png 이미지

Fig. 9. Test measuring device (a) DGPS & gyro sensor (b) DAQ (c) Steering wheel sensor (d) G-meter(e) Euro NCAP dummy

SHGSCZ_2018_v19n11_550_f0010.png 이미지

Fig. 10. Test environment measuring device(a) Skid-resistance (b) Illuminator

SHGSCZ_2018_v19n11_550_f0011.png 이미지

Fig. 11. Radar detection range

SHGSCZ_2018_v19n11_550_f0012.png 이미지

Fig. 12. ACC actual vehicle test result

SHGSCZ_2018_v19n11_550_f0013.png 이미지

Fig. 13. LKAS actual vehicle test result

SHGSCZ_2018_v19n11_550_f0014.png 이미지

Fig. 14. AEB actual vehicle test result

Table 1. ISO-15622 ACC parameter

SHGSCZ_2018_v19n11_550_t0001.png 이미지

Table 2. ISO-11270 LKAS parameter

SHGSCZ_2018_v19n11_550_t0002.png 이미지

Table 3. ISO-19237 PDCMS parameter

SHGSCZ_2018_v19n11_550_t0003.png 이미지

Table 4. ISO-22839 FVCMS parameter

SHGSCZ_2018_v19n11_550_t0004.png 이미지

Table 5. Euro NCAP AEB parameter

SHGSCZ_2018_v19n11_550_t0005.png 이미지

Table 6. Test environment

SHGSCZ_2018_v19n11_550_t0006.png 이미지

Table 7. Friction coefficient by branch office for testing

SHGSCZ_2018_v19n11_550_t0007.png 이미지

Table 8. Illuminance per hour

SHGSCZ_2018_v19n11_550_t0008.png 이미지

Table 9. RT3002(DGPS & gyro sensor) spec.

SHGSCZ_2018_v19n11_550_t0009.png 이미지

Table 10. Steering wheel sensor spec.

SHGSCZ_2018_v19n11_550_t0010.png 이미지

Table 11. Euro NCAP dummy spec.

SHGSCZ_2018_v19n11_550_t0011.png 이미지

Table 12. G-meter spec.

SHGSCZ_2018_v19n11_550_t0012.png 이미지

Table 13. DAQ-SIRIUS spec.

SHGSCZ_2018_v19n11_550_t0013.png 이미지

Table 14. Skid-resistance spec.

SHGSCZ_2018_v19n11_550_t0014.png 이미지

Table 15. Illuminometer spec.

SHGSCZ_2018_v19n11_550_t0015.png 이미지

Table 16. Radar sensor ESR 2.5 spec.

SHGSCZ_2018_v19n11_550_t0016.png 이미지

Table 17. Camera sensor MFC Camera spec.

SHGSCZ_2018_v19n11_550_t0017.png 이미지

Table 18. Comparison between theory and actual data

SHGSCZ_2018_v19n11_550_t0018.png 이미지

References

  1. http://taas.koroad.or.kr/sta/acs/gus/selectOecdTfcacd.do?menuId=WEB_KMP_OVT_TAC_OAO
  2. http://taas.koroad.or.kr/sta/acs/gus/selectAcdntTyTfcacd.do?menuId=WEB_KMP_OVT_TAG_ATT
  3. B. C. Yim, D. S. Yun, H. C. Kim and S. K. Oh, "The research of AEB performance test method bases on Euro-NCAP and analysis of domestic traffic accident cases", Journal of The Korean Society Of Automotive Engineers, pp. 609-610, May, 2015. DOI: http://www.dbpia.co.kr/Article/NODE07204836
  4. Y. S. Choi, S. H. Kim, J. K. Jung and J. K. Yoon, "A Study on the Applicability of AEBS according to Radar Angle Using PC-Crash and Traffic Accident Database", Journal of The Korean Society Of Automotive Engineers, pp. 691-701, Nov, 2017. DOI: http://www.dbpia.co.kr/Article/NODE07253120
  5. J. W. Woo, M. G. Kim and S. B. Lee, "Study on the Test Method of AEB and FCW System", Journal of The Korean Society Of Automotive Engineers, pp. 1160-1163, May, 2013. DOI: http://www.dbpia.co.kr/Article/NODE02174910
  6. B. J. Kim and S. B. Lee, "A Study on Evaluation Method of the Adaptive Cruse Control", Journal of Drive and Control, Vol. 14, No. 3, pp. 1-7, Sep, 2017. DOI: http://www.dbpia.co.kr/Article/NODE07245614
  7. P. H. Yoon and S. B. Lee, "A Study on Evaluation Method of the LKAS Test in Domestic Road Environment", Journal of The Korea Academia-Industrial, Vol. 18, No. 12, pp. 628-637, Dec, 2017. DOI: http://www.dbpia.co.kr/Article/NODE07292926
  8. B. J. Kim and S. B. Lee, "A Study on Evaluation Method of the AEB Test", Journal of KASA, Vol. 10, No. 2, pp. 20-28, May, 2018. DOI: http://www.kasa.kr/website/05resources04.php?code=as_journal&mode=view&number=173&keyfield=pressdate&key=201806
  9. H. B. Park, S. P. Jung, Y. S. Min and Y. M. Lim, "Performance evaluation method of high performance brake pads considering circuit driving", Journal of The Korean Society Of Automotive Engineers, pp. 411-412, May, 2017. DOI: http://www.dbpia.co.kr/Article/NODE07204767
  10. N. K. Choi, J. K. Kim and J. S. Koo, "Study on the effect of full sevice electric vehicles break value characteristic changes in the braking signed", Journal of Korean Society for Railway, pp. 1367-1372, Oct, 2016. DOI: http://www.dbpia.co.kr/Article/NODE07058699
  11. B. B. Jung, W. Y. Kang, J. H. Yi and S. J. Heo, "Effect Analysis of the Vehicle Brake Distance according to The Tire Property", Journal of The Korean Society Of Automotive Engineers, pp. 583-588, May, 2013. DOI: http://www.dbpia.co.kr/Article/NODE07058699
  12. ISO 15622 Intelligent Transport Systems - Adaptive Cruise Systems - Performance Requirements and Test Procedures, ISO, 2010.
  13. ISO 19237 Intelligent Transport Systems - Pedestrian Detection and Collision Mitigation System - Performance Requirements and Test Procedures, ISO, 2017.
  14. ISO 22839 Intelligent Transport Systems - Forward Vehicle Collision Mitigation System - Performance Requirements and Test Procedures, ISO, 2013.
  15. Euro NCAP, "Test Protocol - AEB systems. Version 1.0", 2013.
  16. H. Kevin, H. Rick, "The role of towels as a control to reduce slip potential", HSL, 2007.