DOI QR코드

DOI QR Code

Analysis of Contact Pressure for Material Combination in Unicompartmental Knee Implant

반치환 무릎 인공관절에서의 재료조합에 따른 접촉압력 분석

  • 노태헌 (연세대학교 기계공학부) ;
  • 전흥재 (연세대학교 기계공학부)
  • Received : 2017.08.30
  • Accepted : 2017.12.21
  • Published : 2018.02.28

Abstract

In knee implants, contact pressure has a significant effect on wear. In this study, finite element analysis is performed using the knee implant model developed in the previous research. The contact pressures for a total of 10 knee implant materials combinations were analyzed using the combinations actually used in research and industry. In order to calculate the contact pressure, The load was applied when the flection angle of knee was $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$. The result of contact pressure revealed the smallest contact pressure in the titanium alloy-UHMWPE combination. In the case of UHMWPE, contact pressure did not change much with any material used in the femur. Compared the combination with the largest contact pressure and the smallest contact pressure, the difference was 0.77%. On the other hand, Carbon / PEEK composites showed 5.3% difference when the contact pressure was the largest and the smallest. It can be seen that when the Carbon / PEEK composite material is used as the bearing part, the material of the femoral part affects the wear. This study will contribute to the prediction of knee implant wear and minimization of wear.

무릎 임플란트에서 접촉압력이 마모에 큰 영향을 미친다. 본 연구에서는 본 연구기관에서 개발한 무릎 임플란트 모델을 이용하여 유한요소해석을 하였다. 연구와 산업에서 실제로 사용하는 조합을 이용하여 총 10가지의 무릎 임플란트의 재료조합에 대한 접촉압력을 분석하였다. 무릎이 30도, 45도 60도 기울어져있을 때의 하중을 가하여 접촉압력을 구하였다. 접촉압력을 계산한 결과 티타늄합금-UHMWPE 조합에서 가장 작은 접촉압력이 나왔다. UHMWPE의 경우 대퇴골부에 어떠한 재료를 사용하여도 접촉압력이 크게 변하지 않았다. 접촉압력이 가장 큰 조합과 작은 조합을 비교하였을 때 0.77% 차이를 보였다. 반면에 Carbon/PEEK 복합재료의 경우 접촉압력이 가장 큰 경우와 작은 경우를 비교하였을 때 5.3% 차이를 보였다. 이를 통해 Carbon/PEEK 복합재료를 베어링부로 사용할 경우 대퇴골부의 재료가 마모에 영향을 미침을 알 수 있다. 본 연구는 무릎 임플란트 마모예측과 마모를 최소화 연구에 도움이 될 것이라 생각한다.

Keywords

References

  1. Alsamhan, A.M. (2013) Rationale Analysis of Human Artificial Knee Replacements, J. King Saud Univ.-Eng. Sci., 25(1), pp.49-54. https://doi.org/10.1016/j.jksues.2011.12.002
  2. Bahraminasab, M., Jahan, A. (2011) Material Selection For Femoral Component of Total Knee Replacement using Comprehensive VIKOR, Mater. & Des., 32(8), pp.4471-4477. https://doi.org/10.1016/j.matdes.2011.03.046
  3. Bal, B.S., Khandkar, A., Lakshminarayanan, R., Clarke, I., Hoffman, A. A., Rahaman, M.N. (2009) Fabrication and Testing of Silicon Nitride Bearings in Total Hip Arthroplasty: Winner of The 2007 "Hap" Paul Award, J. Arthroplast., 24(1), pp.110-116. https://doi.org/10.1016/j.arth.2008.01.300
  4. Bartel, D.L., Bicknell, V.L., Wright, T.M. (1986) The Effect of Conformity, Thickness, and Material on Stresses in Ultra-High Molecular Weight Components for Total Joint Replacement, JBJS, 68(7), pp.1041-1051. https://doi.org/10.2106/00004623-198668070-00010
  5. Brailovski, V., Prokoshkin, S., Gauthier, M., Inaekyan, K., Dubinskiy, S., Petrzhik, M., Filonov, M. (2011) Bulk and Porous Metastable Beta Ti-Nb-Zr (Ta) Alloys for Biomedical Applications, Mater. Sci. & Eng.: C, 31(3), pp.643-657. https://doi.org/10.1016/j.msec.2010.12.008
  6. Cadambi, A., Engh, G.A., Dwyer, K.A., Vinh, T.N. (1994) Osteolysis of the Distal Femur after Total Knee Arthroplasty, J. Arthroplast., 9(6), pp.579-594. https://doi.org/10.1016/0883-5403(94)90111-2
  7. Cho, H.J., Wei, W. ., Kao, H.C., Cheng, C.K. (2004) Wear Behavior of Uhmwpe Sliding on Artificial Hip Arthroplasty Materials, Mater. Chem. & Phys., 88(1), pp.9-16. https://doi.org/10.1016/j.matchemphys.2003.10.021
  8. Crockett, R., Roba, M., Naka, M., Gasser, B., Delfosse, D., Frauchiger, V., Spencer, N. D. (2009) Friction, Lubrication, and Polymer Transfer between Uhmwpe and Cocrmo Hip-Implant Materials: a Fluorescence Microscopy Study, J. Biomed. Mater. Res. Part A, 89(4), pp.1011-1018.
  9. Emerton, M.E., Burton, D. (2001) (Ii) The Role of Unicompartmental Knee Replacement, Curr. Orthop., 15(6), pp.406-412. https://doi.org/10.1054/cuor.2001.0226
  10. Fregly, B.J., Sawyer, W.G., Harman, M.K., Banks, S.A. (2005) Computational Wear Prediction of a Total Knee Replacement From in Vivo Kinematics, J. Biomech., 38(2), pp.305-314. https://doi.org/10.1016/j.jbiomech.2004.02.013
  11. Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K. (2009) Ti Based Biomaterials, The Ultimate Choice for Orthopaedic Implants-A Review, Prog. Mater. Sci., 54(3), pp.397-425. https://doi.org/10.1016/j.pmatsci.2008.06.004
  12. Innocenti, B., Labey, L., Kamali, A., Pascale, W., Pianigiani, S. (2014) Development and Validation of a Wear Model to Predict Polyethylene Wear in a Total Knee Arthroplasty: a Finite Element Analysis, Lubricants, 2(4), pp.193-205. https://doi.org/10.3390/lubricants2040193
  13. Kang, L., Galvin, A.L., Fisher, J., Jin, Z. (2009) Enhanced Computational Prediction of Polyethylene Wear in Hip Joints by Incorporating Cross-Shear and Contact Pressure in Additional to Load and Sliding Distance: Effect of Head Diameter, J. Biomech., 42(7), pp.912-918. https://doi.org/10.1016/j.jbiomech.2009.01.005
  14. Keegan, G.M., Learmonth, I.D., Case, C. (2008) A Systematic Comparison of the Actual, Potential, and Theoretical Health Effects of Cobalt and Chromium Exposures from Industry and Surgical Implants, Crit. Rev. Toxicol., 38(8), pp.645-674. https://doi.org/10.1080/10408440701845534
  15. Keene, G.C., Forster, M.C. (2005) (Iii) Modern Unicompartmental Knee Replacement, Curr. Orthop., 19(6), pp.428-445. https://doi.org/10.1016/j.cuor.2005.10.003
  16. Kuster, M.S., Horz, S., Spalinger, E., Stachowiak, G.W., Gachter, A (2000). The Effects of Conformity and Load in Total Knee Replacement, Clin. Orthop. & Relat. Res., 375, pp.302-312. https://doi.org/10.1097/00003086-200006000-00036
  17. Long, M., Rack, H.J. (1998) Titanium Alloys in Total Joint Replacement-A Materials Science Perspective, Biomater., 19(18), pp.1621-1639. https://doi.org/10.1016/S0142-9612(97)00146-4
  18. Mantripragada, V.P., Lecka-Czernik, B., Ebraheim, N.A., Jayasuriya, A.C. (2013) An Overview of Recent Advances in Designing Orthopedic and Craniofacial Implants, J. Biome. Mater. Res. Part A, 101(11), pp.3349-3364. https://doi.org/10.1002/jbm.a.34605
  19. Mattila, R. (2012) Hip and Knee Replacement Implants: Information Package for Nurses: Hoitonetti.
  20. Mendonca, G., Mendonca, D.B., Simoes, L.G., Araujo, A.L., Leite, E.R., Duarte, W.R., Cooper, L.F. (2009) The Effects of Implant Surface Nanoscale Features on Osteoblast-Specific Gene Expression, Biomater., 30(25), pp.4053-4062. https://doi.org/10.1016/j.biomaterials.2009.04.010
  21. Minoda, Y., Kobayashi, A., Iwaki, H., Miyaguchi, M., Kadoya, Y., Ohashi, H., Takaoka, K. (2005) Polyethylene Wear Particle Generation in Vivo in an Alumina Medial Pivot Total Knee Prosthesis, Biomater., 26(30), pp.6034-6040. https://doi.org/10.1016/j.biomaterials.2005.03.022
  22. Morrison, J.B. (1970) The Mechanics of Muscle Function in Locomotion, J. Biomech., 3(4), pp.431-451. https://doi.org/10.1016/0021-9290(70)90016-3
  23. Muller, U., Imwinkelried, T., Horst, M., Sievers, M., Graf-Hausner, U. (2006) Do Human Osteoblasts Grow into Open-Porous Titanium, Eur Cell Mater, 11, pp.8-15. https://doi.org/10.22203/eCM.v011a02
  24. Perl, D.P., Brody, A.R. (1980) Alzheimer'S Disease: X-Ray Spectrometric Evidence of Aluminum Accumulation in Neurofibrillary Tangle-Bearing Neurons, Sci., 208(4441), pp.297-299. https://doi.org/10.1126/science.7367858
  25. Piconi, C., Maccauro, G., Muratori, F., Prever, E.B.O. (2003) Alumina and Zirconia Ceramics in Joint Replacements, J. Appl. Biomater. & Biomech., 1(1), pp.19-32.
  26. Schmalzried, T.P., Campbell, P., Schmitt, A.K., Brown, I., Amstutz, H.C. (1997) Shapes and Dimensional Characteristics of Polyethylene Wear Particles Generated in Vivo by Total Knee Replacements Compared to Total Hip Replacements, J. Biome. Mater. Res. Part A, 38(3), pp.203-210. https://doi.org/10.1002/(SICI)1097-4636(199723)38:3<203::AID-JBM4>3.0.CO;2-T
  27. Shi, J. (2007) Finite Element Analysis of Total Knee Replacement Considering Gait Cycle Load and Malalignment, Doctoral Dissertation, University of Wolverhampton.
  28. Song, Y., Park, C.H., Moriwaki, T. (2010) Mirror Finishing of Co-Cr-Mo Alloy using Elliptical Vibration Cutting, Precis. Eng., 34(4), pp.784-789. https://doi.org/10.1016/j.precisioneng.2010.02.003
  29. Sugita, T., Chiba, T., Kawamata, T., Ohnuma, M., Yoshizumi, Y. (2000) Assessment of Articular Cartilage of the Lateral Tibial Plateau in Varus Osteoarthritis of the Knee, The Knee, 7(4), pp.217-220. https://doi.org/10.1016/S0968-0160(00)00065-X
  30. Van Den Heever, D.J., Scheffer, C., Erasmus, P., Dillon, E. (2011) Contact Stresses in a Patient-Specific Unicompartmental Knee Replacement, Clin. Biomech., 26(2), pp.159-166. https://doi.org/10.1016/j.clinbiomech.2010.09.007
  31. Van Jonbergen, H.P.W., Innocenti, B., Gervasi, G.L., Labey, L., Verdonschot, N. (2012) Differences in the Stress Distribution in the Distal Femur Between Patellofemoral joint Replacement and Total Knee Replacement: A Finite Element Study, J. Orthop. Surg. & Res., 7(1), p.28. https://doi.org/10.1186/1749-799X-7-28
  32. Zhang, Y., Sun, M.J., Zhang, D. (2012) Designing Functionally Graded Materials with Superior Load-Bearing Properties, Acta Biomater., 8(3), pp.1101-1108. https://doi.org/10.1016/j.actbio.2011.11.033
  33. Zhou, Y.S., Ohashi, M., Ikeuchi, K. (1997) Start up and Steady State Friction of Alumina Against Alumina, Wear, 210(1), pp.112-119. https://doi.org/10.1016/S0043-1648(97)00041-0