DOI QR코드

DOI QR Code

Measurement on the Natural Frequency of a Laminated Cantilever Microbeam using a Laser Interferometer

레이저 간섭계를 이용한 적층 마이크로 외팔보의 고유진동수 측정

  • Kim, Yun-Young (Division of Mechanical, Automotive and Robot Component Engineering) ;
  • Han, Bong-Koo (Department of Civil Engineering, Seoul National University of Science & Technology)
  • 김윤영 (동의대학교 기계자동차로봇부품공학부) ;
  • 한봉구 (서울과학기술대학교 건설시스템공학과)
  • Received : 2017.08.20
  • Accepted : 2017.12.06
  • Published : 2018.02.28

Abstract

The natural frequency of a laminated cantilever microbeam was studied in the present investigation. The microbeam was made of quartz on a silicon chip, and its top and bottom surfaces were coated with thin(~30nm) gold films. An ultrasonic testing platform was employed to resonate the microbeam, and its time domain signal was optically measured. The natural frequency was quantified through the fast Fourier transform of the waveform, and the result showed good agreement with a theoretical estimation from the classical beam theory. This study is expected to provide a dynamic evaluation technique for micro/nanoscale materials and micromechanical structures.

오늘날까지 적층 마이크로 외팔보의 고유진동수에 대하여 연구가 진행되었다. 마이크로 보는 실리콘 재질로 만들어 지지만, 그것의 상하 표면은 얇은 금 박막층(~30nm)이 증착되어 있다. 초음파 검사를 위해 초음파 테스트 플랫폼을 사용했으며, 시간영역 신호는 광학적으로 측정되었다. 고유진동수는 파형을 고속 Fourier 변환을 통해 정량화하였으며, 결과적으로 고전적인 보 이론과 일치하는 결과를 보여 주었다. 본 연구는 마이크로/나노스케일 재료와 마이크로 구조에 대한 동적평가기법을 제공할 것으로 기대된다.

Keywords

References

  1. Ali, S.M., Mantell, S.C., Longmire, E.K. (2011) Mechanical Performance of Microcantilevers in Liquids, J. Microelectromechanical Syst., 20(2), pp.441-450. https://doi.org/10.1109/JMEMS.2011.2107883
  2. Bourouina, H., Yahiaoui, R., Yusifli, E., Benamar, M.E.A., Ghoumid, K., Herlem, G. (2016) Shear Effect on Dynamic Behavior of Microcantilever Beam with Manufacturing Process Defects, Microsyst. Technolo., pp.1-6.
  3. Comella, B.T., Scanlon, M.R. (2000) The Determination of the Elastic Modulus of Microcantilever Beams Using Atomic Force Microscopy, J. Mater. Sci., 35(3), pp.567-572. https://doi.org/10.1023/A:1004712007729
  4. Cortes, F., Sarria, I. (2015) Dynamic Analysis of Three-layer Sandwich Beams with Thick Viscoelastic Damping Core for Finite Element Applications, Shock & Vib., 2015, p.736256.
  5. Enning, R., Ziegler, D., Nievergelt, A., Friedlos, R., Venkataramani, K., Stemmer, A. (2011) A High Frequency Sensor for Optical Beam Deflection Atomic Force Microscopy, Rev. Sci. Instrum., 82(4), p.043705. https://doi.org/10.1063/1.3575322
  6. Kim, Y.Y., Lee, S., Park, J., Cho, Y. (2017) Ultrasonic Characterization of a Resonating High-Speed Microcantilever, Trans. Korean Soc. Mech. Eng. A, 41(6), pp.483-489. https://doi.org/10.3795/KSME-A.2017.41.6.483
  7. Kim, H.C., Lee, S.H. (2012) Sensing System for Measuring Deflection of Microcantilever, Trans. Korean Soc. Mech. Eng. A, 36(9), pp.961-964(in Korean). https://doi.org/10.3795/KSME-A.2012.36.9.961
  8. Landau, L.D., Lifshitz, E.M. (1970) Theory of Elasticity, Pergamon Press, Oxford.
  9. Li, M., Tang, H.X., Roukes, M.L. (2007) Ultra-sensitive NEMS-based Cantilevers for Sensing, Scanned Probe and Very High-frequency Applications, Nature Nnanotechnology, 2(2), pp.114-120. https://doi.org/10.1038/nnano.2006.208
  10. Na, S., Park, J., Chang, K. (2013) Detection of Silver Ion Using Microcantilever's Resonant Frequency, Proc. KSNVE Annual Spring Conference, Yeosu, Korea, pp.807-808(in Korean).
  11. Tang, Y., Fang, J., Yan, X., Ji, H.-F. (2004) Fabrication and Characterization of $SiO_2$ Microcantilever for Microsensor Application, Sensors & Actuators B, 97(1), pp.109-113. https://doi.org/10.1016/j.snb.2003.08.003